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Abstract

The number of commercial banks in the United States has fallen by more than
50 percent since 1984. This consolidation of the U.S. banking industry and the ac-
companying large increase in average (and median) bank size have prompted concerns
about the effects of consolidation and increasing bank size on market competition and
on the number of banks that regulators deem “too–big–to–fail.” Agency problems
and perverse incentives created by government policies are often cited as reasons why
many banks have pursued acquisitions and growth, though bankers often point to
economies of scale. This paper presents new estimates of ray-scale and expansion-path
scale economies for U.S. banks based on non-parametric local-linear estimation of a
model of bank costs. Unlike prior studies that use models with restrictive parametric
assumptions or limited samples, our methodology is fully non-parametric and we es-
timate returns to scale for all U.S. banks over the period 1984–2006. Our estimates
indicate that as recently as 2006, most U.S. banks faced increasing returns to scale,
suggesting that scale economies are a plausible (but not necessarily only) reason for
the growth in average bank size and that the tendency toward increasing scale is likely
to continue unless checked by government intervention.

∗Wheelock: Research Department, Federal Reserve Bank of St. Louis, P.O. Box 442, St. Louis, MO
63166–0442; wheelock@stls.frb.org. Wilson: The John E. Walker Department of Economics, 222 Sirrine Hall,
Clemson University, Clemson, South Carolina 29634–1309, USA; email pww@clemson.edu. This research was
conducted while Wilson was a visiting scholar in the Research Department of the Federal Reserve Bank of
St. Louis. We thank the Cyber Infrastructure Technology Integration group at Clemson University for
operating the Palmetto cluster used for our computations; we are especially grateful to Barr von Oehsen
for technical support and advice. We thank Craig Aubuchon, Heidi Beyer and David Lopez for research
assistance, and we thank the editor, Bob DeYoung, and an anonymous referee for comments on a previous
version of this paper. The views expressed in this paper do not necessarily reflect official positions of the
Federal Reserve Bank of St. Louis or the Federal Reserve System. JEL classification nos.: G21, L11, C12,
C13, C14. Keywords: banks, returns to scale, scale economies, non-parametric, regression.



1 Introduction

The past 25 years have witnessed a consolidation of the U.S. banking industry on a scale

not seen since the Great Depression. Between 1984 and 2008, the number of U.S. com-

mercial banks fell by more than 50 percent, from 14,482 to 7,086. Over the same period,

the average size of U.S. banks increased five-fold in terms of inflation-adjusted total assets.

Bank executives and industry analysts contend that changes in regulation and advances in

information-processing technology have encouraged banks to grow larger, and often point

to economies of scale to justify bank mergers.1 Critics contend that consolidation has had

a deleterious impact on market competition, however, and that the increase in the size of

banks reflects agency problems and government policies that disproportionately benefit large

banks. In particular, the recent financial crisis has brought forward concerns about banks

that regulators deem “too–big–to–fail” in the sense that their failure would pose serious sys-

temic risks, which has prompted calls for regulatory limits on bank size (e.g., Reich, 2008;

O’Driscoll, 2009). However, Stern and Feldman (2009) contend that policymakers should

consider the loss of any scale benefits when determining the net benefit of limiting the size

of banks. Hence, assessment of the extent of scale economies is important for gauging the

costs and benefits of any policy intervention to control the size of banks.

Despite the claims of bankers, with few exceptions, researchers have found little evidence

of significant scale economies in banking. Early studies found that banks exhaust scale

economies at $100-$200 million of total assets, suggesting little cost savings are generated

through either bank mergers or internally-generated growth. However, much of the early

research on scale economies in banking involved the estimation of parametric cost functions

that fail basic specification tests or models that fail to capture key features of bank produc-

tion.2 Differences in estimates of scale economies between earlier and more recent studies

may also partly reflect the removal of branching restrictions and other changes in regulation

that have made it less costly for banks to become large in recent years (Mester, 2005). Fur-

ther, over time, technological advances may have favored larger banks and thereby affected

returns to scale. Information processing equipment and software entail rather high fixed

1 For example, see Bach (2001), Thompson (2002), and Rieker (2006). Berger (2003) describes the myriad
advances in information and financial technology and changes in regulation affecting the banking industry
over these years, and discusses their implications for banks of different sizes.

2 McAllister and McManus (1993) and Mester (2005) survey the older literature on scale economies.
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costs. Moreover, reductions in the cost of acquiring quantifiable information about potential

borrowers have eroded some of the benefits of small scale and close proximity to borrowers

that enabled small banks traditionally to out-compete larger banks for some customers, such

as small businesses (see Petersen and Rajan, 2002; Berger, 2003; and Bernanke, 2006).

Recent research has found considerably more evidence of scale economies in banking. For

example, McAllister and McManus (1993) and Wheelock and Wilson (2001) find that banks

face increasing returns to scale up to at least $500 million of total assets. Both studies use

non-parametric and semi-non-parametric methods that avoid the problem of specifying a

priori a particular functional cost relationship to be estimated. Likewise, studies that incor-

porate banks’ risk preferences and financial capital into models of bank production find more

evidence of increasing returns to scale than studies that ignore these effects. For example,

Hughes et al. (2001) estimate returns to scale within the context of a value maximization

model that explicitly incorporates the capital structure and risk-taking preferences of indi-

vidual banks. Based on a sample of 441 top-tier bank holding companies in 1994, Hughes

et al. (2001) find that large banks face significant scale economies that increase with bank

size.

Feng and Serilitis (2009) also find that large banks operate under increasing returns to

scale. That study derives estimates of returns to scale from Bayesian estimation of a translog

output distance function, rather than from a cost function. This approach has the advantage

of avoiding the use of input prices, which may be subject to considerable measurement error.

Based on a sample of 292 banks with at least $1 billion of total assets during 2000-05, Feng

and Serilitis (2009) find that all banks exhibit increasing returns to scale. As the study

acknowledges, however, the translog specification is suitable only for samples composed of

relatively homogeneous firms. A different approach is required for estimating scale economies

across banks of widely differing sizes.

The present paper reports new estimates of returns to scale for banks throughout the

distribution of observed bank sizes for 1984–2006. We estimate returns to scale in a cost

framework, which provides evidence on whether society’s resources are allocated efficiently

by addressing directly the long-controversial question whether banks can lower their average

costs by increasing scale. Although bankers often claim that banks can lower costs by

expanding in size, many policymakers and academics remain skeptical (see, e.g., Haldane,
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2010 and Greenspan, 2010).3

We use a non-parametric local-linear estimator to estimate the cost relationship for com-

mercial banks and to derive estimates of ray-scale and expansion-path scale economies, and

thereby avoid the potential for specification error associated with parametric estimation.4

Non-parametric estimators are subject to the well-known “curse of dimensionality,” and large

sample sizes are required because of the slow convergence rates of non-parametric estima-

tors. We employ principal components techniques to reduce the dimensions of our empirical

model. Further, we estimate the model using two large datasets. Sample #1 consists of

887,369 quarterly observations on all U.S. commercial banks for 1984-2006. Sample #2 con-

sists of 868,647 quarterly observations on all commercial banks for 1984-2000, and on a mix

of commercial banks and bank holding companies comprising the largest top-tier banking

organizations for 2001-06.5 In consisting of data for only commercial banks, the first sample

has the advantages of being both somewhat larger and more homogeneous than the second

dataset. Further, because most bank holding companies had consolidated their banking as-

sets by 2006 so that the lead bank comprised all or nearly all of the banking assets of the

entire holding company, the first sample includes some banks that were as large as nearly

all bank holding companies. Only two bank holding companies were larger than the largest

bank in our first sample in the fourth quarter of 2006, and only four holding companies were

larger than that bank as of the first quarter of 2010. Nonetheless, by including the very

largest banking organizations, the second sample is useful for estimating returns to scale

3 Although our approach can provide information about the extent of cost economies in banking, it does
not address such questions as whether increased bank scale affects the costs incurred by bank customers,
the risks incurred by banks, or the risks that the banking system may impose on society more broadly.
Furthermore, Hughes et al. (2001) and other studies report evidence suggesting that banks do not, in fact,
minimize cost. This evidence is consistent with their pursuit of other objectives, such as value maximization,
as well as with possible agency problems between bank managers and shareholders, or simply inefficiency.
Following the approach of Hughes et al. (2001), we also find evidence that many banks do not use optimal
amounts of capital input (results given in a separate Appendix D, available from the authors upon request).

4 Like McAllister and McManus (1993) and Wheelock and Wilson (2001), we tested and easily rejected the
stability of the parameters of a translog cost function estimated across banks of different sizes (a description
of the test and results are given in Section 3 and a separate Appendix A, which is available from the authors
upon request).

5 Specifically, for 2001-06, sample #2 is comprised of observations on all independent commercial banks,
commercial banks owned by non-reporting holding companies, and consolidated data for reporting top-
tier holding companies. Due to changes in reporting requirements for holding companies, data on holding
companies for earlier years do not allow construction of some of the variables in our model for periods prior
to 2001. In addition, since 2005, only holding companies with at least $500 million of assets have been
required to file consolidated financial reports.
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throughout the entire range spanned by the data.

For both samples, we incorporate discrete covariates into the estimation procedure to

control for whether a commercial bank was owned by a multi-bank holding company, as

well as for time and whether a bank was located in a state that restricted branch banking.

Multi-bank holding companies often provide services, such as advertising and access to ATM

networks, to their subsidiaries that may cause their cost structures to differ from those of

other banks. For the early years of our sample, we also distinguish between banks that

operated in states that restricted branching versus those in states with more liberal regula-

tions. Interstate branching was not permitted until 1997, and in prior years several states

restricted branching within their state borders. Although all banks have operated under full

interstate branching since 1999, for earlier years we produce separate estimates for banks

located in states that prohibited branching, permitted some branching, or that permitted

state-wide branching. Finally, we use cross-validation techniques to optimize bandwidths

and a non-parametric bootstrap procedure for inference. Our large sample size and use of

non-parametric estimators results in a substantial computational burden, which we handle

using parallel programming techniques and a massively parallel computer (details are given

below in Section 4).

Our estimates reveal that most banking organizations, including the very largest hold-

ing companies, operated under increasing returns to scale throughout our sample period.

Hence, our findings are consistent with other recent studies that find evidence of significant

scale economies for large banking organizations, as well as with the view that industry con-

solidation has been driven, at least in part, by scale economies. Further, our results have

implications for policies intended to limit the size of banks to ensure competitive markets, to

reduce the number of banks deemed “too-big-to-fail,” or for other purposes. Although there

may be benefits to imposing limits on the size of banks, our research points out potential

resource costs of such intervention.6

6 Federal banking law restricts individual banking organizations from engaging in most acquisitions that
would result in the organization holding more than 10-percent of the nation’s total bank deposits, or more
than 30-percent of an individual state’s total deposits. In addition, the Dodd-Frank Wall Street Reform
and Consumer Protection Act prohibits most acquisitions or mergers that would result in the concentration
of more than 10 percent of the aggregated liabilities of all financial companies in a single firm. U.S. bank
regulators and the Department of Justice review all proposed bank mergers and acquisitions and will deny
transactions that would result in excessively concentrated banking markets (see Gilbert and Zaretsky, 2003).
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The next section presents a model of bank costs and describes the ray-scale and expansion-

path measures of scale economies. Section 3 discusses our non-parametric estimator and

methods for inference. Section 4 presents estimation results, and Section 5 offers our con-

clusions.

2 A Model of Bank Costs

2.1 Specifying the Cost Mapping

To estimate scale economies we must first specify a model of bank costs. Two issues are

involved: (i) the choice of appropriate variables, and (ii) given those variables, the mapping

of output quantities, input prices, and other arguments of the cost relationship.

With regard to variable specification, we define five inputs and five outputs that, with

one exception (the measure of off-balance sheet output), are those used by Berger and Mester

(2003). Specifically, we define the following output quantities: consumer loans (Y1), busi-

ness loans (Y2), real estate loans (Y3), securities (Y4), and off-balance sheet items (OFF)

consisting of net non-interest income minus service charges on deposits.7 We define three

variable input quantities: (i) purchased funds, consisting of the sum of total time deposits of

$100,000 or more, foreign deposits, federal funds purchased, demand notes, trading liabili-

ties, other borrowed money, mortgage indebtedness and obligations under capitalized leases,

and subordinated notes and debentures;8 (ii) core deposits, consisting of total deposits less

time deposits of $100,000 or more; and (iii) labor services, measured by the number of full-

time equivalent employees on payroll at the end of each quarter. We measure the prices

of purchased funds (W1), core deposits (W2), and labor services (W3) by dividing total

expenditure on the given input by its quantity. Variable cost (COST) is the sum of ex-

penditures on these three inputs. Finally, we define two fixed netput quantities: physical

capital, consisting of premises and other fixed assets (Z1), and financial equity capital (Z2).9

7 Of the commonly used measures of off-balance sheet output, net non-interest income is the most
consistently measurable across banks and over time. However, as a net, rather than gross measure of income,
it is potentially a biased measure of off-balance sheet output because losses would appear to reduce off-balance
sheet output. Data are not reported that would permit calculation of a gross measure of non-interest income.
See Clark and Siems, 2002 for discussion of alternative measures of off-balance sheet activity.

8 This variable is intended to capture non-core deposit (and non-equity) sources of investment funds for
the bank. See Berger and Mester (2003) for more detail.

9 Our treatment of physical and equity capital as quasi-fixed reflects the absence of reliable price data
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With the exception of labor input (which is measured as full-time equivalent employees) and

off-balance sheet output (which is measured in terms of net flow of income), our inputs and

outputs are stocks measured by dollar amounts reported on bank balance sheets, consistent

with the widely used “intermediation” model of Sealey and Lindley (1977).

In addition to the variables defined above, we index quarters 1984.Q1 through 2006.Q4

by setting TIME = 1 for 1984.Q1, TIME = 2 for 1984.Q2, . . ., TIME = 92 for 2006.Q4.

Although TIME is an ordered, categorical variable, we treat it as continuous since it can

assume a wide range of possible values. The regulatory environment and the production tech-

nology of banking changed a great deal over the 23 years covered by our data; consequently,

it seems important to include TIME as an explanatory covariate in the cost function. Two

features of our estimation strategy allow a great deal of flexibility. First, because we use

a fully non-parametric estimation method, we impose no constraints on how TIME might

interact with other explanatory variables. Second, the local nature of our estimator means

that when we estimate cost at a particular point in time, observations from distant time

periods will have little or no effect on the estimate. By contrast, typical approaches that

involve estimation of a fully parametric translog cost function model by OLS or some other

estimation procedure are not local in the sense that when cost is estimated at some point

in the data space, all observations contribute to the estimate with equal weight. Moreover,

the typical approach requires the imposition of a specific functional form a priori for any

interactions among explanatory variables.10

To control for differences in costs associated with holding company affiliation, we de-

fine MBHC = 1 for commercial banks that are owned by a multi-bank holding company

(MBHC = 0 otherwise). We also employ three binary variables to control for the different

branch banking regimes that existed during our sample period. Full interstate branching has

been in effect since 1999. Before then, state laws specified the extent to which banks were

permitted to operate branches within individual states. We define (i) STATEWIDE = 1

for banks operating in states that permitted state-wide branching (STATEWIDE = 0 oth-

erwise); (ii) LIMITED = 1 for banks operating in states that permitted limited branching

and is consistent with other recent studies (e.g., Berger and Mester, 2003). Some studies (e.g., Hughes et al.,
2001) also include nonperforming loans as an additional source of cost.

10 The local nature of our estimator is discussed in more detail below in Section 3 and in a separate
Appendix B, which is available from the authors upon request.
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(LIMITED = 0 otherwise); and (iii) UNIT = 1 for banks operating in states that prohibited

branching altogether (UNIT = 0 otherwise). For all quarters 1999.Q1 through 2006.Q4, we

set STATEWIDE = LIMITED = UNIT = 0 to reflect the interstate branching regime.

As noted previously, we estimate our empirical model using two alternative samples. The

first consists of quarterly observations for 1984.Q1 through 2006.Q4 on all U.S. commercial

banks. We omitted banks with missing or negative values for any input or output, and

converted dollar values to constant year-2000 prices using the GDP deflator. After pooling

the data across quarters, 887,369 observations are available for estimation, with from 5,922

to 13,709 observations in each quarter. The second sample is identical to the first sample

for 1984.Q1 through 2000.Q4. For 2001.Q1 through 2006.Q4, however, the second sample

consists of quarterly observations on commercial banks that were independent or owned by a

non-reporting holding company, and of observations on reporting top-tier holding companies.

As with the first sample, we omitted banking organizations with missing or negative values

for any input or output, and converted dollar values to constant year-2000 prices. For a

top-tier holding companies with missing or invalid data, we included data for its subordinate

banks. Table 1 reports summary statistics as of 1984.Q4, 1995.Q4, and 2006.Q4 for total

assets and the variables described above. Note that for the second sample we report summary

statistics only for 2006.Q4 since the two samples are identical for 1984.Q4 and 1995.Q5 (as

well as all other quarters between 1984.Q1 and 2000.Q4).11

The distribution of total assets (and other measures of size) among U.S. banks is ex-

tremely wide and skewed. Figure 1 shows kernel density estimates for (inflation-adjusted)

total assets in 1984.Q4, 1995.Q4, and 2006.Q4 for sample #1, comprised only of commercial

banks. The densities for each period are noticeably skewed to the right, despite the use of

a log scale on the figure’s horizontal axis. The density estimates also reveal that the distri-

bution of bank sizes has shifted to the right, reflecting the increase in mean (and median)

bank size over time.12

11 Data for commercial banks are from Reports of Income and Condition (“call reports”), and those for
bank holding companies from the FR Y-9C reports. Both are available from the Federal Reserve Bank of
Chicago (http://www.chicagofed.org).

12 Kernel density estimates for sample #2, comprised of both commercial banks and bank holding com-
panies, reveals similar patterns.
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The variables defined above suggest the following mapping:

(

Y1, Y2, Y3, Y4, Z1, Z2, W1/W3, W2/W3, OFF, TIME,

MBHC, STATEWIDE, LIMITED, UNIT
)

→ COST/W3. (2.1)

Note that we divide COST, W1, and W2 by the price of labor services, W3, to maintain

homogeneity with respect to input prices.

This mapping in turn suggests the following regression function:

COST

W3
= C(y,w) + ε (2.2)

where y =
[

Y1 Y2 Y3 Y4 OFF
]

,

w =
[

W1

W3

W2

W3
Z1 Z2 TIME MBHC STATEWIDE LIMITED UNIT

]

,

and ε is a random error term with E(ε) = 0 and VAR(ε) = σ2(y,w). Given that the

expectation of ε equals 0, C(y,w) = E(COST | y,w) is a conditional mean function that

can be estimated by various regression techniques.

2.2 Ray-Scale Economies

Now consider a particular point (y
0
,w0) in the space of (y,w). The set of points R0 =

{(θy
0
,w0) | θ ∈ (0,∞)} comprises a ray along which the outputs Y1, Y2, Y3, Y4, and OFF

are produced in constant proportion to one another. Ray scale economies can be evaluated

by examining how expected cost varies along this ray, providing insight into returns to scale

along the ray R0. Returns to scale are frequently measured in terms of elasticities; the

elasticity of cost (with respect to y) at a particular point (y,w) along the ray R0 is given

by

η(y,w) ≡
∂ logC(θy,w)

∂ log θ

∣

∣

∣

∣

∣

θ=1

=
∑

j

∂ logC(y,w)

∂ log yj
, (2.3)

where j indexes the elements of y. The elasticity in (2.3) is the multi-product analog of

marginal cost divided by average cost on the ray R0, with η(y,w)(<, =, >)1 implying

(increasing, constant, decreasing) returns to scale as outputs in y are expanded along the

ray R0. Banks for which η(y,w) ̸= 1 are not competitively viable; if banks are subject to
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the normal rules of competitive behavior, either a smaller or a larger firm could drive a bank

with η(y,w) ̸= 1 from a competitive market.

The measure defined in (2.3) requires estimation of derivatives of the cost function. We

employ fully non-parametric estimation methods, as discussed below in Section 3. Non-

parametric estimates of derivatives of a function are typically noisier than estimates of the

function itself.13 Hence, we define the ratio

S(θ | y
0
,w0) ≡

C(θy
0
,w0)

θC(y
0
,w0)

. (2.4)

It is straightforward to show that

∂S(θ | y
0
,w0)

∂θ
S 0 ⇐⇒ η(y

0
,w0) S 1; (2.5)

i.e., S(θ | y
0
,w0) is decreasing (constant, increasing) in θ if returns to scale are increasing

(constant, decreasing) at (θy
0
,w0) along the ray R0 passing through (y

0
,w0). In addition,

S(1 | y
0
,w0) = 1 by definition. Thus, we investigate ray scale economies (RSE) along a ray

R0 by estimating C(y
0
,w0) and C(θy

0
,w0) for various values of θ, and using confidence

bands to determine whether S(θ | y
0
,w0) is downward or upward sloping.

2.3 Expansion-Path Scale Economies

In the empirical analysis below, we define the fixed point (y
0
,w0) by taking medians of

the variables in our model. Of course, few if any banks may be located along the ray

R0. Although RSE is a convenient measure of scale economies, it may be misleading if

most banks are located “far” from R0. As an alternative to RSE, we also consider scale

economies along each bank’s expansion path, i.e., along the path which holds each bank’s

output mix constant. Consider a bank operating at the point (y
0
,w0), with cost C(y

0
,w0).

Let γ be a small positive number, say 0.05, and consider how cost changes as we move from

((1 − γ)y
0
,w0) to ((1 + γ)y

0
,w0); along this path, the output mix remains constant in

the sense that relative proportions are maintained. Now let θ(1 − γ)y
0
= (1 + γ)y

0
; then

θ = (1 + γ)/(1− γ) ≈ 1.1053 for γ = 0.05.

13 This is particularly true for the present case where we would require derivatives in several dimensions; in

addition, bandwidth selection becomes problematic when estimating derivatives in more than one dimension.
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The following expression provides a measure of expansion-path scale economies (EPSE)

for a bank operating at (y0,w0):

E0 =
C (θ(1− γ)y0,w0)

θC ((1− γ)y0,w0)
(2.6)

=
C ((1 + γ)y0,w0)

(

1+γ

1−γ

)

C ((1− γ)y0,w0)
. (2.7)

By construction, an increase in output quantities by the factor θ >1 is associated with an

increase in cost by a factor E0θ; alternatively, a decrease in outputs by a factor θ−1 leads to

a decrease in costs by a factor (E0θ)
−1. Therefore, a bank operating at (y0,w0) experiences

(decreasing, constant, increasing) returns to scale along the path from ((1 − γ)y0,w0) to

((1 + γ)y0,w0) as E0(>,=, <)1. Our measure E0 provides an indication of returns to scale

faced by a particular bank along the path from the origin through the bank’s observed output

vector, starting at a level equal to 95-percent of the quantities in y0 and continuing to a

level equal to 105-percent of the quantities in y0 for γ = 0.05.

The RSE and EPSE measures are both defined in terms of a bank’s cost function. The

following section discusses a strategy for estimating the cost function non-parametrically,

which in turn allows us to estimate, and make inference about, these measures of scale

economies.

3 Strategy for Estimation and Inference

Various approaches exist for estimating regression functions (i.e., conditional mean functions)

such as the one defined above in (2.2). A common approach is to estimate the function

parametrically using a translog specification. However, because the translog function is

merely a quadratic specification in log-space, this approach limits the variety of shapes the

cost function is permitted to take. Further, because the translog is derived from a Taylor

expansion of the cost function around the mean of the data, it makes little sense to use a

translog specification to attempt inference about returns to scale over units of widely varying

size.

We tested and rejected as a mis-specification the translog functional form for the bank

cost relationship. Specifically, for each of the 92 quarters represented by the data in sample

#1 and the 24 quarters from 2001.Q1 to 2006.Q4 represented in sample #2 (recall that data

10



in sample #2 for 2000.Q4 and earlier are identical to corresponding data in sample #1), the

four binary dummy variables defined in Section 2 divide the data for a given quarter into as

many as eight sub-samples. For each sub-sample in each quarter, we sorted observations by

total assets and then split the subsample into two halves (consisting of banks smaller than

the median bank in the sub-sample, and those that are larger than the median bank in the

sub-sample). We next estimated translog cost functions separately on the two halves of the

sub-sample as well as on the full sub-sample, and then performed a Wald test to test whether

parameter estimates are stable across the two halves. Among 374 cases, we obtained values

for the Wald statistic ranging from 74.15 to 948.8, and corresponding p-values ranging from

0.044 to 3.96× 10−163. The largest p-value allows us to reject the translog specification at 5

percent significance; the next-largest p-value was 2.49× 10−5. Hence, in every case our data

reject the translog specification at any reasonable level of significance.14

Rejection of the translog functional form is hardly surprising. Several studies have noted

that the parameters of a translog function are unlikely to be stable when the function is

fit globally across units of widely varying size.15 The problem points to the use of non-

parametric estimation methods. Although non-parametric methods are less efficient than

parametric methods in a statistical sense when the true functional form is known, non-

parametric estimation avoids the risk of specification error when the true functional form is

unknown, as in the present application.

We use fully non-parametric, local-linear and local-quadratic estimators augmented along

the lines of Li and Racine (2004), Wilson and Carey (2004) and Wheelock and Wilson

(2011) to handle discrete covariates. Both the local-linear and local-quadratic estimators are

examples of local order-p polynomial estimators, as is the Nadaraya-Watson kernel regression

estimator (Nadaraya, 1964; Watson, 1964). For a locally-fit polynomial of order p used to

estimate a derivative of order v, going from (p− v) even to (p− v) odd results in a reduction

of bias with no increase in variance (e.g., see Fan and Gijbels (1996) for discussion). Hence,

14 Additional details and discussion are provided in a separate Appendix A, which is available from the
authors on request.

15 See, for example, Guilkey et al. (1983) and Chalfant and Gallant (1985) for Monte Carlo evidence, and
Cooper and McLaren (1996) and Banks et al. (1997) for empirical evidence involving consumer demand.
Still others have found a similar problem while estimating cost functions for hospitals (Wilson and Carey,
2004) and for US commercial banks (e.g., McAllister and McManus, 1993; Mitchell and Onvural, 1996; and
Wheelock and Wilson, 2001); both hospitals and banks vary widely in terms of size.
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we use a local-linear estimator to estimate conditional mean functions (resulting in lower

asymptotic mean square error than one would obtain with the Nadaraya-Watson estimator),

and a local-quadratic estimator to estimate first derivatives of the conditional mean function.

Non-parametric regression models may be viewed as infinitely parameterized; as such,

any parametric regression model (such as the translog cost function) is nested within a

non-parametric regression model. Clearly, adding more parameters to a parametric model

affords greater flexibility. Non-parametric regression models represent the limiting outcome

of adding parameters.16

Most non-parametric estimators suffer from the “curse of dimensionality,” i.e., conver-

gence rates fall as the number of model dimensions increases. The convergence rate of our

estimator would be n
1/14 with ten continuous explanatory variables, as in (2.2), which is

much slower than the usual parametric rate of n1/2.17 The slow convergence rate of our

estimator implies that for a given sample size, the order (in probability) of the estimation

error we incur with our non-parametric estimator will be larger than the order of the estima-

tion error one would achieve using a parametric estimator in a correctly specified model. Of

course, the non-parametric estimation strategy avoids specification error that would likely

render meaningless any results that might be obtained using a mis-specified model.18

In economic applications, multicollinearity among regressors is often viewed as an annoy-

ance, but here we are able to exploit multicollinearity in our data to reduce the dimensionality

of our problem, thereby increasing the convergence rate of our estimators and reducing esti-

mation error. We do this by transforming our continuous regressors to principal components

space. Principal components are orthogonal, and eigensystem analysis can be used to deter-

mine the information content of each principal component. In particular, we sacrifice a small

amount of information (approximately 7.5 percent of the independent linear information in

sample #1, and about 7.75 percent of similar information in sample #2) by deleting four

principal components, reducing the number of continuous variables in our regression from ten

16 Several possibilities for non-parametric regression exist. Fan and Gijbels (1996, chapter 1) and Härdle
and Linton (1999) provide nice descriptions of non-parametric regression and the surrounding issues.

17 The convergence rate is unaffected by the inclusion of four binary dummy variables.
18 Convergence results for non-parametric estimators are often expressed in terms of order of convergence

in probability. Briefly, for a sequence (in n) of estimators ζ̂n of some scalar quantity ζ, we can write

ζ̂ = ζ + Op(n
−a) when ζ̂ converges to ζ at rate na, and we say that the estimation error is of order in

probability n−a. This means that the sequence of values na|ζ̂n − ζ| is bounded in the limit (as n → ∞) in
probability. See Serfling (1980) or Simar and Wilson (2008) for additional discussion.
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to six. The transformation to principal components can be inverted, and the interpretation

of the estimates is straightforward since our estimator is fully non-parametric.19

Use of local-linear and local-quadratic estimators requires that we select two bandwidth

parameters to control the smoothing over continuous and discrete dimensions in the data.

We use least-squares cross-validation to choose the bandwidths, which amounts to choos-

ing bandwidth values that minimize an estimate of mean integrated square error. In the

continuous dimensions, we use a κ-nearest-neighbor bandwidth and a spherically symmetric

Epanechnikov kernel function. This means that when we estimate cost at any fixed point

of interest in the data space, only the κ observations closest to the fixed point of interest

can influence estimated cost at that point. Moreover, among these κ observations, the influ-

ence that a particular observation has on estimated cost diminishes with distance from the

point at which cost is being estimated. This is the sense in which our estimator is a local

estimator, and is very different from typical, parametric, global estimation strategies (e.g.,

OLS, maximum likelihood, etc.) where all observations in the sample influence (with equal

weight) estimation at any given point in the data space.

For statistical inference about our estimates of returns to scale, we use the wild bootstrap

introduced by Härdle (1990) and Härdle and Mammen (1993), which allows us to avoid

making specific distributional assumptions. We estimate confidence intervals along the lines

used in Wheelock and Wilson (2011). Although our estimators are asymptotically normal,

the asymptotic distributions depend on unknown parameters; the bootstrap allows us to

avoid the need to estimate these parameters, which would introduce additional noise.20

19 With six continuous dimensions, our estimator converges at rate n
1/10. To get an idea of the order

of estimation error that we face, we can compare the order of estimation error with the size of samples
against the same order of estimation error one might obtain with an OLS estimator in a correctly-specified
model using a sample of m observations. For example, in sample #1 there are n = 887, 046 observations;
setting 887, 046−1/10 = m

−1/2 yields m ≈ 15.47; hence, in our application, we can expect estimation error
to be of the same order (in probability) that one would expect to obtain with an OLS estimator and a
correctly specified model using only 15–16 observations. One would perhaps not expect to find estimates of
high statistical significance when using OLS with only 15 to 16 observations; however, as will be seen below
in Section 4, most of our results are highly significant. Additional details about our principal components
transformation and non-parametric estimation strategy are given in a separate Appendix B, available from
the authors upon request.

20 Additional details about our inference methods are given in a separate Appendix B, which is available
from the authors upon request.

13



4 Empirical Results

4.1 General Remarks

Recall that samples #1 and #2 differ only over the period 2001.Q1–2006.Q4. We present

results for three periods, namely 1984.Q4, 1995.Q4, and 2006.Q4, although we use all obser-

vations in a sample for estimation. As a consequence of the local nature of our estimators,

the estimates for 1984.Q4 are virtually identical across the two samples, and nearly so for

1995.Q4. Any meaningful differences in estimates between the two samples are possible only

for 2006.Q4. In the discussion that follows, we present results obtained using sample #1

for each of the three periods, as well as results obtained using sample #2 for the last pe-

riod. Results obtained from sample #1 permit comparison across time with a homogeneous

sample, while comparisons across samples in the last period serve as a robustness check.

As discussed in Section 3, both our non-parametric local-linear and local-quadratic es-

timators involve two bandwidth parameters, with one controlling the degree of smoothing

along continuous data dimensions, and the other controlling the degree of smoothing across

the eight categories defined by our four binary dummy variables. The principal components

transformation that we use to reduce dimensionality orthogonalizes the data and standard-

izes the variances, so that we can use a single bandwidth in the continuous dimensions.

For the continuous dimensions, we use nearest-neighbor bandwidths as in Wilson and Carey

(2004) and Wheelock and Wilson (2011). For sample #1, least-squares cross validation with

the local-linear estimator yields a nearest-neighbor bandwidth κ̂ = 6, 477, meaning that the

conditional mean function at a given point is estimated by giving positive weights to the

6,477 observations closest to the point of interest in terms of Euclidean distance, and zero

weight to the remaining observations. For sample #2, the nearest-neighbor bandwidth is

optimized at κ̂ = 6, 420, and is only slightly smaller than the bandwidth used for sample

#1.21

21 Details on cross validation with the local-linear and local-quadratic estimators are available in a separate
Appendix B, which is available from the authors upon request. Using the local-quadratic estimator, the
optimized bandwidths are somewhat larger; for sample #1, the optimized nearest-neighbor bandwidth is
48,491, while for sample #2 it is 47,486. For both estimators and both samples, the “optimal” values of the
bandwidths for the discrete variables is about 0.97–0.99. Optimization of the bandwidth parameters requires
numerous evaluations of the cross-validation function for different values of the bandwidth parameters,
and the computation time required for each evaluation is proportional of order O(n2). With almost one
million observations, optimization is a formidable task. One approach would be to optimize the bandwidth
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4.2 Estimates of RSE

After optimizing bandwidth parameters, we used sample #1 and the local-linear estimator

to estimate the RSE measure defined in (2.4) for θ ∈ {0.05, 0.10, 0.15, . . . , 0.95, 1.0, 2.0,

3.0,. . . , 30.0, 32.0, 34.0, . . . , 120.0}, with (y
0
,w0) given by the medians of each variable,

setting TIME equal to 4, 48 or 92 (corresponding to 1984.Q4, 1995.Q4, and 2006.Q4). We

repeated this exercise using sample #2 for TIME = 92, again corresponding to 2006.Q4.

The range of values for θ ensures that we consider RSE throughout the range of bank sizes

(measured in terms of total assets) in our sample. For sample #1, θ = 0.05 times median

total assets corresponds to the 0.02, 0.03, and 0.03 percentiles of total assets in 1984.Q4,

1995.Q4, and 2006.Q4 (respectively), while θ = 120 times median total assets corresponds

to the 99.46, 99.08, and 99.36 percentiles of total assets in the same periods. For sample

#2, θ = 0.05 times median total assets corresponds to the 0.02 percentile in 2006.Q4, while

θ = 120 times median assets corresponds to the 99.11 percentile for the same period.

Figures 2–3 illustrate the estimation results for RSE for 1984.Q4, 1995.Q4, and 2006.Q4.

As noted previously, sample #2 is identical to sample #1 for the period 1984-2000; this and

the local nature of our estimator ensures that there are no qualititative differences in results

across the two samples for 1984.Q4 and 1995.Q4; hence, for those periods we show only

results obtained with sample #1. However, for 2006.Q4 we show results for both samples in

the bottom two panels of Figure 3.

Although the binary dummy variables MBHC, STATEWIDE, LIMITED, and UNIT

define eight cells in each year, we report results only for cells in which banks are observed

in the given year. Table 2 reports the number of observations in each of the eight cells

for 1984.Q4, 1995.Q4, and 2006.Q4. Unit banking prevailed in a few states in 1984.Q4

but in neither of the later periods, whereas interstate branching was available to all banks in

2006.Q4. For sample #1, Figures 2–3 show the results for banks that were members of multi-

bank holding companies (indicated by MBHC = 1), which tend to be larger than independent

banks and those owned by single-bank holding companies; the results for banks that were

parameters using a random subset of the observations in our data and then adjust for the true sample size;
however, given the highly skewed nature of our data, this might introduce substantial noise if the size of the
sub-sample is small. Instead, we wrote Fortran code employing calls to the Message-Passing Interface (MPI)
library (see Gropp et al., 1999 for discussion) to compute the cross-validation function in parallel.
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not multi-bank holding company members are qualitatively similar.22 Results shown for

2006.Q4 based sample #2 are for top-tier bank holding companies and independent banks,

and therefore encompass the largest banking organizations (by definition, top-tier holding

companies do not belong to another holding company, and hence for these institutions,

MBHC = 0).

The solid curves in Figures 2–3 trace out our estimates of RSE corresponding to various

values of θ. The dashed curves are upper and lower bounds of 99-percent confidence intervals

estimated using the bias-corrected bootstrap method.23 The point estimates lie outside the

estimated confidence intervals in some cases because of the bias-correction incorporated into

our confidence interval estimation. Note that both axes in Figures 2–3 have log scales.

Recalling the discussion in Section 2, a downward slope for the RSE measure as a function

of θ indicates increasing returns to scale along the ray from the origin through the median

point (y
0
,w0). The results displayed in Figures 2–3 provide clear evidence of increasing

returns to scale throughout the size range of banks in each period, regardless of branching

regime or sample used for estimation. From the previous discussion in Section 3 regarding

sample size and the “equivalent” sample size in terms of estimation error achieved with an

OLS estimator in a correctly specified model, we might a priori expect marginally significant

results at best. Yet, our results appear quite strong in terms of statistical significance

throughout the range of bank sizes.

4.3 Estimates of EPSE

Whereas RSE measures returns to scale along a ray from the origin through the median

point (y
0
,w0), EPSE measures returns to scale for individual banks along the ray from the

origin through a given bank’s observed output vector, starting at a point equal to 95-percent

of the quantities in y
0
and continuing to a level equal to 105-percent of the quantities in

y
0
. EPSE may provide a more realistic picture of returns to scale faced by actual banks,

especially for those whose output vector differs substantially from the median.

We estimated the EPSE measure defined in (2.7) for each bank observed in 1984.Q4,

22 Results for banks that were not members of multi-bank holding companies are available from the authors

upon request.
23 The confidence intervals shown in Figures 2–3 are point-wise, rather than simultaneous. However, it

seems doubtful that confidence bands would be so wide as to lead to a failure to reject constant returns to

scale throughout the size-range of banks.
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1995.Q4, and 2006.Q4 for both of our samples. We then estimated 99-percent bias-corrected

confidence intervals using bootstrap methods described previously. Next, for each period, we

counted the number of cases where the estimated confidence intervals are strictly less than

1.0 (indicating increasing returns to scale), strictly greater than 1.0 (indicating decreasing

returns to scale), or contain 1.0 (indicating constant returns to scale). The results, which

are tallied in Table 3, indicate that in each period, more than 99.7 percent of banks faced

increasing returns to scale along their observed expansion paths. We cannot reject constant

returns to scale for the few remaining banks. In particular, we find no evidence that any

banks—not even the very largest banks—faced decreasing returns to scale.

For 2006.Q4, we reject at 99-percent significance the null hypothesis of constant returns

in favor of increasing returns for all but nine of 6,691 banks in sample #1, and for all but

16 of 6,074 banking organizations in sample #2. Of the nine in sample #1 for which we

cannot reject constant returns to scale, the largest, and only one in the top quartile, had

total assets of $641.1 million. The next largest had total assets of $172.1 million, and the

total assets of the remaining banks for which we fail to reject constant returns are $154.2,

$124.2, $42.3, $30.0, $27.6, $12.4, and $5.5 million. Of the 16 banks in sample #2 for which

we cannot reject constant returns to scale in 2006.Q4, the largest had total assets of $140.4

billion; the next nine had assets ranging from $3.4 to $78.6 billion, and the remaining seven

had assets ranging from $5.5 to $641.1 million. Thus, we reject constant returns to scale in

favor of increasing returns for the largest institutions, and for all but one institution with

total assets of $100 billion or more.

Given that we test the null hypothesis of constant returns in 2006.Q4 6,691 times for

sample #1 and 6,090 times for sample #2, and fail to reject in only 25 of 12,781 cases,

we believe that our evidence is strong and compelling. One might expect that a statistical

test would fail to reject in a few cases, even if the null is false in every case, simply due to

sampling variation, noise, estimation error, etc. In fact, one might reasonably expect a test

to fail to reject the null in perhaps many more than 25 cases; the fact that our tests reject

the null in 99.8 percent of all cases for 2006.Q4 is a strong result, particularly since we reject

constant returns among the largest banks in our two samples.

Figures 4–6 plot the EPSE confidence interval estimates based on the first sample for

each bank in 1984.Q4, 1995.Q4, and 2006.Q4, respectively, and Figure 7 plots the EPSE
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confidence interval estimates based on the second sample for each bank in 2006.Q4. The

four panels in each figure show the confidence intervals for banks across asset-size quartiles

(Quartile 1 consists of the smallest 25-percent of banks; Quartile 2 consists of the next-

smallest 25-percent, etc.). Within each panel, banks are sorted by the upper bound of their

estimated 99-percent confidence interval. As the figures illustrate, the confidence intervals

for almost all banks lie entirely below 1.0, indicating that we reject constant returns to scale

in favor of increasing returns. The results are consistent across time and across asset-size

quartiles in that we reject constant returns in favor of increasing returns for nearly all banks

in each sample year and in each asset-size quartile. There are a few banks in each quartile

for which we are unable to reject constant returns, but none for which we reject constant

returns in favor of decreasing returns to scale. Thus, the evidence for both expansion-path

and ray-scale economies indicate that most U.S. banks faced increasing returns to scale as

recently as 2006, despite more that 20 years of industry consolidation and increasing average

bank size. Further, our evidence is consistent with other recent studies that find that even

the largest U.S. bank holding companies operate under increasing returns to scale (Hughes

et al., 2001; Feng and Serilitis, 2009).

Estimates of returns to scale can be used to estimate the resource costs associated with

the imposition of limits on the size of banks. For example, in the following “back of the

envelope” calculations, we estimate the additional cost of operating the four largest U.S.

bank holding companies (BHCs), which by the end of 2010 each had total assets exceeding

$1 trillion, as firms with no more than $1 trillion of assets. For ease of exposition, in the

discussion that follows we give figures in terms of 2010 dollars.

As of December 31, 2010, four BHCs had total assets greater than $1 trillion: Bank of

America Corporation, with $2.268 trillion; JP Morgan Chase with $2.118 trillion; Citigroup

with $1.914 trillion; and Wells Fargo, with $1.258 trillion; together, these four institutions

managed $7.558 trillion of assets. The largest institution in sample #2 (Citigroup) had

total assets of $1.885 trillion in 2006.Q4. For simplicity and to be conservative, suppose

that constant returns to scale prevail beyond asset size of $1.885 trillion. Then the assets of

the four largest BHCs in 2010 could be managed by 7.558/1.885 ≈ 4 organizations without

increasing total costs; this would amount to shifting assets among the four largest BHCs in

2010 so that each is the size of Citigroup in 2006.Q4.
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Now consider splitting the assets of these hypothetical, new institutions among eight

institutions of equal size with total assets of $7, 558/8 = $944.75 billion dollars. How much

would costs of managing these assets increase due to this split? To answer this, divide

Citigroup’s total assets in 2006.Q4 by the asset size of the eight new, hypothetical institutions

to obtain 1.885/(7.558/8) ≈ 1.9952. The inverse of this, 1/1.952 ≈ 0.5012, is the factor by

which each of the eight new, hypothetical firms would have to be reduced in order to have

assets of $944.75 billion dollars. The average EPSE estimate among the 20 largest institutions

in sample #2 in 2006.Q4 is 0.9754. Recalling from the definition of the EPSE measure in

(2.7) that γ = 0.5 and hence θ = 1.95/0.95 ≈ 1.1053, and that reducing Citigroup’s size by a

factor of θ−δ = 0.5012 would reduce its costs by a factor (Eθ)−δ. Solving for δ = 6.9019 and

setting E = 0.9754, we have (Eθ)−δ ≈ 0.5952. Citigroup’s observed cost in 2006 was $103.8

billion dollars; therefore, assuming outputs are proportional to size, reducing Citigroup’s size

by a factor of 0.5012 can be expected to reduce its costs by a factor of (1-0.5952).

Four institutions the size of Citigroup in 2006.Q4 might incurs costs of $103.8×4 = $415.2

billion dollars to manage $7.558 trillion dollars of assets. If these assets were instead managed

by eight institutions with assets of $944.75 billion dollars, we would expect the costs to be

about $103.8 × 8 × 0.5952 ≈ $494.3 billion dollars. Hence, a size cap of $1 trillion dollars

could be expected to increase the cost of managing the assets of the four institutions with

total assets exceeding $1 trillion in 2010 by about 494.3− 415.2 or $79.1 billion dollars per

year in 2010 dollars.

For comparison, the combined net income of the four largest U.S. bank holding companies

in 2003, 2004, 2005, and 2006 were $41.6 billion, $42.6 billion, $57.3 billion, and $65.5 billion,

respectively, in current-year dollars, or $48.9 billion, $48.7 billion, $63.4 billion, and $70.2

billion in 2010 dollars. Hence, our back of the envelope estimate suggests that capping the

size of the four largest bank holding companies at $1 trillion would result in an increase in

the total cost of operating those firms that would exceed their combined profits in each of

the four years 2003–06.

Ostensibly, discussions about limiting the size of banks are aimed at limiting the cost

of future bailouts. Bailouts are not necessary every year, or even every decade, however,

while the cost of about $79.1 billion dollars per year would be on-going, year after year.

In addition, as other institutions grow and reach the $1 trillion dollar boundary, additional
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opportunity costs would be incurred by the size limits. There may well be reasons to limit

the size of banks, and a complete analysis of the potential benefits and costs of such a policy

is beyond the scope of this paper, but the evidence on scale economies suggests that the

likely resource costs of a hard limit on the size of banks are probably not trivial.

4.4 Comparison with Prior Results

Although the results obtained in this paper indicate increasing returns to scale throughout

the size distribution of banks, Wheelock and Wilson (2001), by contrast, could not reject

constant returns to scale for banks larger than about $500 million of total assets. The

present paper differs from Wheelock and Wilson (2001) in three ways. First, the present

paper arguably uses a more realistic model of bank costs, borrowed from Berger and Mester

(2003). In particular, our model includes measures of off-balance sheet output (OFF) and

equity capital (Z2), which were not included in the specification of Wheelock and Wilson

(2001). Since banks incur costs in generating non-interest income (our measure of off-balance

sheet activity), and larger banks tend to generate proportionately more income from off-

balance sheet activities than small banks, failure to include off-balance sheet activity as an

output would tend to bias against finding increasing returns to scale.24 Similarly, failure

to control for the level of equity capital would also tend to bias estimates of returns to

scale downward since larger banks tend to operate with lower equity ratios, and thus are

more leveraged and incur more interest expense than small banks. Hence, the strong result

obtained in the present paper may be due, at least in part, to the inclusion of off-balance

sheet output and equity capital in the model.

A second difference between the present and earlier paper is that the sample sizes of the

present paper paper are roughly 100 times the size of the individual cross sections used by

Wheelock and Wilson (2001). Although we use a similar local linear estimator to estimate

returns to scale, the larger datasets could also explain why our results differ from those of

Wheelock and Wilson (2001).

Finally, a third difference between the two papers lies in the time periods examined;

Wheelock and Wilson (2001) used three cross-sectional datasets covering 1985, 1989, and

24 DeYoung and Roland (2001) show that banks with high levels of non-interest income have dispropor-
tionately large amounts of labor expense.

20



1994. In the present paper, we explicitly incorporate time into the model, which allows us to

pool data across time; here, we use data covering 1984.Q1–2006.Q4, and present results for

the fourth quarters of 1984, 1995, and 2006. Consequently, while the data used here cover

the periods examined in the earlier paper, they also span a dozen years after the last year

examined in the earlier paper.

Although the data used in the present paper includes more recent years than those used

in Wheelock and Wilson (2001), our non-parametric, local estimation techniques ensure

that the estimates for 1984.Q4 and 1995.Q4 are only minimally influenced by data lying far

away in time from these periods. In general, the bandwidths used in our local estimators

are decreasing in sample size, meaning that as sample size increases, the estimates become

increasingly “local.” Increasing the amount of data allows increasingly accurate estimates, as

less smoothing is required as sample sizes increase. Consequently, the estimates for 1984.Q4

and 1995.Q4 in the present paper are comparable with those for 1984 and 1994 obtained in

our earlier paper, and any differences in the results between the two papers for those periods

can only be due to differences in model specification or sample size, and not to the inclusion

of data from more recent years in the present paper.

To investigate why our results differ from those of Wheelock and Wilson (2001), we

estimated the model of bank cost of Wheelock and Wilson (2001) using data pooled over

the same 92 quarters that we used to obtain results for the present paper, totaling 885,985

observations. In doing so, we obtained estimates of ray-scale economies that are similar to

those reported in Wheelock and Wilson (2001), i.e., increasing returns up to approximately

the median bank size, and constant returns to scale for larger banks. However, we obtained

estimates of expansion-path scale economies that differ from those reported in the earlier pa-

per, i.e., unlike Wheelock and Wilson (2001) we reject constant returns in favor of increasing

returns to scale throughout the range of bank sizes observed in the data. Thus, it appears

that including off-balance sheet output and equity capital explains why we obtain evidence of

increasing ray-scale economies throughout the range of bank sizes in the present paper when

Wheelock and Wilson (2001) did not. By contrast, the finding of increasing expansion-path

economies is apparently due to the much larger sample size, and hence greater statistical

precision of the estimates reported in the present paper.25

25 Complete estimation results obtained using the variable specification appearing in Wheelock and Wilson
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5 Conclusions

Bank executives frequently cite the attainment of scale economies as an important reason

for bank mergers and acquisitions, but until recently few studies have found evidence of

significant scale economies among banks. Early studies of scale economies in banking typ-

ically imposed restrictive parametric specifications or unrealistic assumptions about bank

production, however, and more recent studies that use non-parametric estimators or more

realistic models of bank production tend to find more evidence of significant scale economies

in banking. The present paper adds to a growing body of evidence that banks face increasing

returns over a large range of sizes. We use non-parametric local linear estimation to evalu-

ate both ray-scale and expansion-path scale economies for two panel datasets comprised of

1) quarterly observations on all U.S. commercial banks during 1984–2006, and 2) all com-

mercial banks during 1984–2000 and a mix of commercial banks and top-tier bank holding

companies during 2001-06. Using either sample, and either measure of scale economies, we

find that most U.S. banks operated under increasing returns to scale. The fact that most

banks faced increasing returns as recently as 2006 suggests that the U.S. banking industry

will continue to consolidate and the average size of U.S. banks is likely to continue to grow

unless impeded by regulatory intervention. Thus, our results indicate that while regulatory

limits on the size of banks may be justified to ensure competitive markets or to limit the

number of institutions deemed too-big-to-fail, such limits could impose significant resource

costs on the industry.

(2001) are presented in a separate Appendix C, available from the authors on request.
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Table 1: Summary Statistics

Min 1st Quartile Median 3rd Quartile Max

—1984.Q4 (Sample #1 and #2)—

COST 93.99 2161.81 4126.24 8429.98 17274239.03

Y1 0.00 2638.17 6161.76 13861.81 12738466.49

Y2 0.00 5247.36 10962.29 24065.57 89144075.59

Y3 0.00 3908.97 9854.42 23034.17 29231312.45

Y4 582.85 12099.15 23908.72 49383.34 64865213.54

Z1 1.46 407.91 936.79 2131.34 2597948.49

Z2 20.62 2528.94 4568.31 8869.52 9099694.97

W1×105 30.53 5682.12 7739.64 9254.80 17900.75

W2×105 22.44 5588.75 6670.61 7481.40 17430.40

W3 1.28 26.70 30.94 37.37 119.93

OFF 0.00 50.82 130.81 357.24 3111568.96

MBHC 0.00 0.00 0.00 1.00 1.00

STATEWIDE 0.00 0.00 0.00 0.00 1.00

LIMITED 0.00 0.00 0.00 1.00 1.00

UNIT 0.00 0.00 0.00 1.00 1.00

ASSETS 2385.79 28245.22 53929.17 110151.83 170312400.20

—1995.Q4 (Sample #1 and #2)—

COST 116.79 1567.59 2981.96 6147.14 15314803.70

Y1 0.00 2139.57 4787.28 11578.97 15216271.96

Y2 0.00 4684.24 9458.28 19923.62 136667391.39

Y3 0.00 8583.43 20724.37 49762.05 48976138.89

Y4 565.90 14452.84 27746.88 56247.71 83747158.57

Z1 1.07 418.44 1052.81 2555.14 3690692.36

Z2 140.28 3507.85 6751.00 13557.46 16052287.87

W1×105 32.31 3772.26 4511.63 5067.66 17601.41

W2×105 13.97 2493.89 3113.23 3630.11 11320.45

W3 1.58 31.96 37.02 44.20 119.78

OFF 0.00 54.92 148.94 496.61 5446438.08

MBHC 0.00 0.00 0.00 1.00 1.00

STATEWIDE 0.00 1.00 1.00 1.00 1.00

LIMITED 0.00 0.00 0.00 0.00 1.00

UNIT 0.00 0.00 0.00 0.00 0.00

ASSETS 2721.21 35567.12 68007.42 139228.66 235476970.75
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Table 1: Summary Statistics (continued)

Min 1st Quartile Median 3rd Quartile Max

—2006.Q4 (Sample #1)—

COST 117.69 1774.61 3733.31 8458.59 37039745.79

Y1 0.00 1490.39 3346.72 7818.04 59579635.04

Y2 0.00 6141.04 13413.33 31195.44 139149471.52

Y3 0.00 18181.46 46799.56 119542.79 151342471.86

Y4 756.18 14885.02 29998.49 64198.65 642794052.09

Z1 0.42 626.25 1813.65 4544.54 5611184.46

Z2 442.78 5619.15 10832.90 22853.01 79437664.91

W1×105 33.86 3738.21 4172.87 4517.64 17903.20

W2×105 10.29 1453.14 2027.74 2612.40 14965.54

W3 9.39 38.26 44.76 54.42 119.12

OFF 0.00 77.37 245.24 853.99 22005093.62

MBHC 0.00 0.00 0.00 0.00 1.00

STATEWIDE 0.00 0.00 0.00 0.00 0.00

LIMITED 0.00 0.00 0.00 0.00 0.00

UNIT 0.00 0.00 0.00 0.00 0.00

ASSETS 4142.88 49706.01 101125.91 231253.37 994201510.38

—2006.Q4 (Sample #2)—

COST 117.69 1706.09 3589.98 8409.83 84468206.73

Y1 0.00 1502.84 3360.20 7845.05 102994682.94

Y2 0.00 6042.65 13111.46 31005.32 281977794.95

Y3 0.00 16960.66 43751.36 115828.77 334606705.60

Y4 756.18 14712.34 29150.81 63306.89 937630439.77

Z1 0.42 601.58 1733.89 4507.96 7963296.24

Z2 442.78 5409.41 10505.92 21938.03 113595448.32

W1×105 33.86 3678.77 4124.84 4482.79 17903.20

W2×105 30.44 1462.01 2029.34 2611.88 11168.07

W3 9.39 38.57 45.14 55.05 119.12

OFF 0.00 72.10 230.46 832.25 41991465.80

MBHC 0.00 0.00 0.00 0.00 1.00

STATEWIDE 0.00 0.00 0.00 0.00 0.00

LIMITED 0.00 0.00 0.00 0.00 0.00

UNIT 0.00 0.00 0.00 0.00 0.00

ASSETS 4142.88 47402.58 97061.05 223970.68 1533643051.37

NOTE: All variables except binary dummy variables (MBHC, STATEWIDE, LIMITED,
and UNIT) are measured in 1,000s of U.S. year-2000 dollars.
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Table 2: Numbers of Observations by MBHC membership and Branching Restrictions

Branching 1984.Q4 1995.Q4 2006.Q4 2006.Q4∗

MBHC=0

interstate 0 0 5251 5478
statewide 1037 5961 0 0
limited 3734 428 0 0
unit 4045 0 0 0

MBHC=1

interstate 0 0 1440 612
statewide 246 2620 0 0
limited 1241 258 0 0
unit 1847 0 0 0

NOTE: Asterisk (∗) indicates sample #2.
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Table 3: Expansion-Path Scale Economies (99-Percent Significance)

Year IRS CRS DRS

1984 12136 14 0

1995 9241 26 0

2006 6682 9 0

2006∗ 6074 16 0

NOTE: Asterisk (∗) indicates sample #2.
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Table 4: Summary Statistics for Expansion-Path Scale Economy Estimates by Size-Quartile

Size 1st 3rd

Quartile Min Quartile Median Mean Quartile Max

—1984.Q4 (Sample #1)—

1 0.8935 0.9312 0.9355 0.9360 0.9401 0.9907

2 0.8313 0.9298 0.9354 0.9358 0.9402 1.0059

3 0.8969 0.9313 0.9358 0.9368 0.9410 0.9754

4 0.8855 0.9368 0.9430 0.9436 0.9486 1.0084

—1995.Q4 (Sample #1)—

1 0.8789 0.9437 0.9495 0.9454 0.9516 0.9661

2 0.8828 0.9438 0.9498 0.9462 0.9522 0.9685

3 0.8943 0.9452 0.9505 0.9478 0.9532 0.9690

4 0.9098 0.9443 0.9507 0.9496 0.9551 1.0325

—2006.Q4 (Sample #1)—

1 0.9308 0.9556 0.9572 0.9562 0.9583 0.9989

2 0.9154 0.9557 0.9573 0.9562 0.9582 0.9739

3 0.9415 0.9560 0.9574 0.9566 0.9584 0.9787

4 0.9103 0.9561 0.9576 0.9577 0.9592 0.9855

—2006.Q4 (Sample #2)—

1 0.9322 0.9567 0.9579 0.9576 0.9590 0.9902

2 0.9177 0.9570 0.9582 0.9578 0.9592 0.9662

3 0.9391 0.9574 0.9585 0.9583 0.9595 0.9792

4 0.9429 0.9580 0.9592 0.9602 0.9608 0.9892

30



Figure 1: Density of (Log) Total Assets for 1984.Q4, 1995.Q4, and 2006.Q4 (Sample #1)
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NOTE: The dotted curve gives the density estimate for 1984.Q4; the dashed curve for
1995.Q4, and the solid curve represents 2006.Q4. Total assets are measured in 1,000s of
year-2000 U.S. dollars.
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Figure 2: Ray Scale Economies (MBHC = 1, year 1984.Q4, 99-percent significance)
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Figure 3: Ray Scale Economies (years 1995.Q4 and 2006.Q5, 99-percent significance)
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NOTE: Asterisk (∗) indicates results obtained with sample #2. Figures for 1995 and for 2006
using sample #1 correspond to MBHC = 1; Figure for 2006 using sample #2 corresponds
to MBHC = 0.
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Figure 4: Expansion Path Scale Economies by Size-Quartile, 1984 (Sample #1, 99-percent
significance)
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Figure 5: Expansion Path Scale Economies by Size-Quartile, 1995 (Sample #1, 99-percent
significance)
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Figure 6: Expansion Path Scale Economies by Size-Quartile, 2006 (Sample #1, 99-percent
significance)
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Figure 7: Expansion Path Scale Economies by Size-Quartile, 2006 (Sample #2, 99-percent
significance)
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Appendix A: Testing the Translog Functional Form

To test the validity of the translog specification of the bank cost function, we divided our

887,369 sample observations into cells corresponding to unique quarters and unique combi-

nations of the binary dummy variables MBHC, STATEWIDE, LIMITED, and UNIT. With

92 quarters and 8 unique combinations of the binary variables, there are potentially 736

cells; however, some cells are empty (for example, interstate branching—indicated by zero

values for STATEWIDE, LIMITED, and UNIT—was prohibited and is hence unobserved in

the early years of our sample). For each non-empty cell, we computed the median of total

assets and divided the sample in each cell into two sub-samples; for a given cell, sub-sample

1 includes all observations in the cell where total assets within the cell are less than or equal

to the cell’s median assets, while sub-sample 2 contains all observations within the cell where

total assets are greater than the cell’s median assets.

Next, for a given cell, we use each of the two subsets to estimate the translog cost model

log(COST/W3i) = β0 +
9

∑

j=1

βjXij +
9

∑

j=1

j
∑

k=1

βjkXijXik + εi (A.1)

where E(ε) = 0 andXi· contains the ith observations on the variables log(1+Y1), log(1+Y2),

log(1 + Y3), log(Y4), log(Z1), log(1 + Z2), log(W1/W3), log(W2/W3), and log(5 + OFF).

The variables COST, W1, and W2 giving dividing variable costs, the price of purchased

funds, and the price of core deposits are divided by W3 (price of labor services) to ensure

homogeneity with respect to input prices. In addition, it is necessary to add small constants

to Y1, Y2, Y3, Z2, and OFF due to small numbers of observations with zero values for these

variables.

For sub-sample j containing nj observations in a given cell, j ∈ {1, 2}, let βj =
[

β1 . . . β55

]

′

, and let Xj be the (nj × 55) matrix containing the right-hand side vari-

ables in (A.1); the first column of Xj consists of a vector of 1s. In addition, let Y j represent

the (nj × 1) matrix containing the nj observations on the left-hand side variable in (A.1), so

that the model can be written (for sub-sample j in a given year) as

Y j = Xjβj + εj, (A.2)

where εj is an (nj × 1) matrix of disturbances with zero mean.
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Using data for each sub-sample j = 1, 2 in a given cell, we estimate (A.1) using ordinary

least squares (OLS), yielding β̂j and ε̂j = Y j − Xjβ̂j. Next, we compute White’s (1980)

heteroskedasticity-consistent covariance matrix estimator

Σ̂j =
(
X ′

jXj

)
−1 (

X ′

jdiag(ε̂
2

j)Xj

) (
X ′

jXj

)
−1

(A.3)

for each sub-sample, where diag(ε̂2j) is the (nj × nj) diagonal matrix with elements of ε̂2j

along the principal diagonal. Under the null hypothesis H0 :β1
= β

2
, asymptotic normality

of OLS estimators ensures that the Wald statistic

Ŵ =
(
β̂

1
− β̂

2

)
′
(
Σ̂1 + Σ̂2

)
−1 (

β̂
1
− β̂

2

)
d

−→ χ2(55). (A.4)

We computed the Wald statistic in (A.4) for each of the 362 non-empty cells represented

in our data, obtaining values ranging from 74.15 to 948.8, and corresponding p-values ranging

from 0.04356 to 3.963×10−163. The largest p-value allows us to reject the translog specifica-

tion at 5 percent significance; the next-largest p-value was 2.488× 10−5. Hence, in all cases

our data reject the translog specification in (A.1) at any reasonable level of significance.

Appendix B: Details of Non-parametric Estimation

and Inference

B.1 Dimension reduction

Most non-parametric regression methods suffer from the well-known curse of dimensionality,

a phenomenon that causes rates of convergence to become slower, and estimation error to

increase dramatically, as the number of continuous right-hand side variables increases (the

presence of discrete dummy variables does not affect the convergence rate of our estimator).

We use a dimension-reduction technique based on principal components to help mitigate

this problem. The idea is to trade a relatively small amount of information in the data for

a reduction in dimensionality that will have a large (and favorable) impact on estimation

error.

For an (n× 1) vector V define the function

ψ1(V ) ≡ (V − n−1i′V )
[
n−1V ′V − n−2V ′ii′V

]
−1/2

(B.1)
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where i denotes an (n × 1) vector of 1’s. The function ψ1(·) standardizes a variable by

subtracting its sample mean and then dividing by its sample standard deviation. Next, let

A be an (n × 10) matrix with columns ψ1(log(1 + Y1)), ψ1(log(1 + Y2)), ψ1(log(1 + Y3)),

ψ1(log(Y4)), ψ1(log(Z1)), ψ1(log(1 + Z2)), ψ1(log(W1/W3)), ψ1(log(W2/W3)), ψ1(log(5 +

OFF)), and ψ1(log(TIME)).

Let Λ be the (10 × 10) matrix whose columns are the eigenvectors of the correlation

matrix of Pearson correlation coefficients for pairs of columns of A. Let λk be the eigenvalue

corresponding to the kth eigenvector in the kth column of Λ, where the columns of Λ, and

hence the eigenvalues, have been sorted so that λ1 ≥ . . . ≥ λ10. Then set P = AΛ. The

matrix P has dimensions (n × 10), and its columns are the principal components of A.

Principal component vectors are orthogonal. Moreover, for each k ∈ {1, 2, . . . , 10}, the

quantity

ϕk =

∑k
j=1

λj
∑

10

ℓ=1
λℓ

(B.2)

represents the proportion of the independent linear information in A that is contained in

the first k principal components, i.e., the columns of P .

Using our data, we find ϕk = 0.5429, 0.7699, 0.8219, 0.8591, 0.8930, 0.9241, 0.9520,

0.9756, 0.9926, and 1.0000 for k = 1, . . . , 10 respectively. Consequently, we use the first

six principal components, omitting the last four, in our non-parametric estimation of the

bank cost function. In doing so, we sacrifice a relatively small amount of information, while

retaining 92.41 percent of the independent linear information in the sample, in order to

reduce the dimensionality of our estimation problem by four dimensions in the space of the

continuous covariates. This seems a worthwhile trade-off given the curse of dimensionality.

Let P ·k denote the kth column of the principal component matrix P and define

ψ0(P ·k) ≡ P ·k

[

n−1
P

′

·kP ·k − n−2
P

′

·kii
′
P ·k

]

−1/2
. (B.3)

The transformation ψ0(P ·k) has (constant) unit variance. Next, let zi represent the row

vector containing the ith observations on ψ0(P ·1), . . . , ψ0(P ·6). In addition, let ui represent

the row vector containing the ith observations on the binary variables MBHC, STATEWIDE,

LIMITED, and UNIT. We can now write our model as the following regression equation:

Ci = m(zi,ui) + ξi (B.4)
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where the subscript i indexes observations, Ci = ψ1 (log(COST/W3)), ξi is a random error

term with E(ξi) = 0, and VAR(ξi) = σ2(zi,ui). The function m(zi,ui) = E(Ci | zi,ui) is

a conditional mean function and can be estimated by non-parametric methods. Moreover,

since the transformation from COST to C can be inverted, given an estimated value m̂(z,u),

straightforward algebra leads to an estimate

Ĉ(y,w) = exp
[
ψ−1

1
(m̂(z,u))

]
. (B.5)

As discussed below, we use a local linear estimator to estimate m(z,u). Although this

estimator is weakly consistent, it is asymptotically biased. Moreover, even if m̂(z,u) were

unbiased, use of the nonlinear transformation in (B.5) means that Ĉ(y,w) obtained from

(B.5) would not, in general, be unbiased because the expectations operator is a linear opera-

tor. Furthermore, even if an unbiased estimator of C(y,w) were used, plugging the estimator

into the definitions of S and E0 given in the text to obtain estimators Ŝ and Ê0 involves ad-

ditional nonlinear transformations. Fortunately, any bias in the resulting estimates Ŝ and Ê0

can be corrected while making inference about returns to scale; as discussed below in Section

B.3, we employ a bias-corrected bootstrap method when estimating confidence intervals for

our returns-to-scale measures.

B.2 A non-parametric estimator of the cost relationship

In order to estimate the conditional mean function in (B.4), ignore (for the moment) the

time variable T and the binary dummy variables D1, D2, so that we can write the condi-

tional mean function on the right-hand side of (B.4) as m(z). Both the Nadaraya-Watson

(Nadaraya, 1964; Watson, 1964) kernel estimator and the local linear estimator are special

cases of local polynomial estimators; with the local linear estimator, the local polynomial

is of order 1, while with the Nadaraya-Watson estimator the local polynomial is of order 0.

The local linear estimator has less asymptotic bias, but the same asymptotic variance, as

the Nadaraya-Watson estimator.

To illustrate the local linear estimator, momentarily ignore the discrete covariates in (B.4)

and write the conditional mean function as m∗(z). Note that z is a vector of length ℓ. The

local linear estimator follows from a first-order Taylor expansion of m∗(z) in a neighborhood
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of an arbitrary point z0:

m∗(z) ≈ m∗(z0) +
∂m∗(z0)

∂z
(z − z0). (B.6)

This suggests estimating the conditional mean function at z0 by solving the locally weighted

least squares regression problem

[
α̂0 α̂

]
′

= argmin
α0,α

n∑

i=1

[Ci − α0 − (zi − z0)α]2 K
(
|H|−1(zi − z0)

)
(B.7)

whereK(·) is a piece-wise continuous multivariate kernel function satisfying
∫
. . .

∫
RℓK(u) du =

1 and K(u) = K(−u), u ∈ R
ℓ; H is an ℓ× ℓ matrix of bandwidths; α0 is a scalar, and α is

an ℓ-vector.

The solution to the least squares problem in (B.7) is

[
α̂0 α̂

′
]
′

= (Z ′
ΦZ)

−1
Z

′
ΦC, (B.8)

where C =
[
C1 . . . Cn

]
′

, Φ = diag [K (|H|−1(zi − z0))], and Z is an n × (ℓ + 1) matrix

with ith row given by
[
1 (zi − z0)

]
. The fitted value α̂0 provides an estimate m̂∗(z0) of

the conditional mean function m∗(z0) at an arbitrary point z0.
1

Some modifications are necessary to introduce the binary dummy variables Di1 and Di2

into the analysis. One possibility is to split the sample into four sub-samples based on the

values of the discrete variables, and then analyze each group separately while treating time

as a continuous variable. However, this approach does not make efficient use of the data

because each sub-sample may contain some information that would be useful in estimation

on the other sub-samples. In addition, in our application, some of the resulting sub-samples

would be very small. With the local linear estimator, we can introduce discrete variables

by modifying the weights in the weighting matrix Φ introduced in (B.8). The idea involves

smoothing across the four categories defined by the two binary dummy variables, and then

letting the data determine how much smoothing is appropriate. Aitchison and Aitken (1976)

1 The fitted values in α̂ provide estimates of elements of the vector ∂m(z0)/∂z. However, if the object is
to estimate first derivatives, mean-square error of the estimates can be reduced by locally fitting a quadratic
rather than a linear expression (see Fan and Gijbels, 1996 for discussion); this increases computational
costs, which are already substantial for the local linear fit. Moreover, determining the optimal bandwidths
becomes more difficult and computationally more burdensome for estimation of derivatives. See Härdle (1990,
pp. 160–162) for discussion of some of the issues that are involved with bandwidth selection for derivative
estimation.
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discuss the use of a discrete kernel for discrimination analysis. Bierens (1987) and Delgado

and Mora (1995) suggest augmenting the Nadaraya-Watson estimator with a discrete ker-

nel, and prove that the estimator remains consistent and asymptotically normal. Racine

and Li (2004) establish convergence rates for the Nadaraya-Watson estimator with mixed

continuous-discrete data; the rate with continuous and discrete covariates is the same as the

rate with the same number of continuous variables, but no discrete variables. The introduc-

tion of discrete covariates does not exacerbate the curse of dimensionality, at least in the

limit.

It is straightforward to extend the local linear estimator to accommodate discrete dummy

variables. Let ui represent a vector of observations on k = 4 binary dummy variables, and

consider an arbitrary Bernoulli vector u0 of length k. Then let δ(ui,u0) = (ui−u0)
′(ui−u0),

and define the discrete kernel function

G(ui | u0, h1) = h
k−δ(ui,u0)
1 (1− h1)

δ(ui,u0) (B.9)

where h1 ∈ [1
2
, 1] is a bandwidth parameter.

Note that lim
h1→1

G(u0 | ui, h1) equals either 1 or 0, depending on whether u0 = ui or

u0 ̸= ui, respectively. In this case, estimation yields the same results as would be obtained

if estimation was performed separately on each of the four sub-samples delineated by the

dummy variables. Alternatively, if h1 = 1
2
, then G(u0 | ui, h1) = 1 regardless of whether

u0 = ui or u0 ̸= ui; in this case, there is complete smoothing over the four categories, and

including the dummy variables has no effect relative to the case where they are ignored.

We specify the kernel function K(·) as an ℓ-variate spherically symmetric Epanechnikov

kernel with a single, scalar bandwidth h0; i.e.,

K(t) =
ℓ(ℓ+ 2)

2Sℓ

(1− tt
′)I(tt′ ≤ 1) (B.10)

where I(·) is the indicator function, Sℓ = 2πℓ/2/Γ(ℓ/2), Γ(·) denotes the gamma function,

u = |H|−ℓ(zi − z0), and H is an (ℓ× ℓ) matrix of bandwidths. The spherically symmetric

Epanechnikov kernel is optimal in terms of asymptotic minimax risk; see Fan et al. (1997)

for details and a proof.

Let D = {0, 1}×{(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0)} be the set of possible values for the

vector u of binary variables. Incorporating the discrete covariates, an estimate m̂ (z0,u0) of
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the conditional mean function in (B.4) at an arbitrary point (z0,u0) ∈ R
ℓ × D is given by

α̂0 obtained from

[
α̂0 α̂

]
′

= argmin
α0,α

n∑

i=1

[Ci − α0 − (zi − z0)α]2 K
(
|H|−1(zi − z0)

)
G(ui | u0, h1) (B.11)

where u0 ∈ D. The solution to the least-squares problem in (B.11) is given by

[
α̂0 α̂

]
′

= (Z ′ΩZ)
−1

Z
′ΩC, (B.12)

where Z is defined as in (B.8) and the matrix Ω of weights is given by

Ω = diag
[
K(|H|−ℓ(zi − z0)G(ui | u0, h1)

]
. (B.13)

Finally, recall that the principal components transformation pre-whitens the data; in ad-

dition, the principal components are orthogonal. Orthogonality suggests setting off-diagonal

elements to zero. The transformation in (B.3) ensures that the columns of Z have con-

stant, unit variance, suggesting use of the same bandwidth in each direction. Hence we set

H = diag(h(z0)) so that |H|−ℓ = h(z0)
−ℓ, where h(z0) is an adaptive scalar bandwidth

depending on the point z0 where the conditional mean function is to be evaluated.

B.3 Practical issues for implementation

To implement our estimator, we must choose values for the bandwidths h(z0) and h1. For

the discrete variables, we employ a (globally) constant bandwidth, while for the continuous

variables we use an adaptive, nearest-neighbor bandwidth. We define h(z0) for any particular

point z0 ∈ R
ℓ as the maximum Euclidean distance between z0 and the κ nearest points in

the observed sample {zi}
n
i=1

, κ ∈ {2, 3, 4, . . .}. Thus, given the data and the point

z0, the bandwidth h(z0) is determined by κ, and varies depending on the density of the

continuous explanatory variables locally around the point z0 ∈ R
ℓ at which the conditional

mean function is estimated. This results in a bandwidth that is increasing with decreasing

density of the data around the point of interest, z0. More smoothing is required where data

are sparse than where data are dense; our nearest-neighbor bandwidth adapts automatically

to the density of the data. The discrete kernels in (B.13) in turn give more (or less) weight

to observations among the κ nearest neighbors that are close (or far) away along the time
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dimension, or that are in the same (or different) category determined by the combination of

binary dummy variables.

Note that we use a nearest-neighbor bandwidth rather than a nearest-neighbor estimator.

The bandwidth is used inside a kernel function, and the kernel function integrates to unity.

Loftsgaarden and Quesenberry (1965) use this approach in the density estimation context to

avoid nearest-neighbor density estimates (as opposed to bandwidths) that do not integrate

to unity (see Pagan and Ullah, 1999, pp. 11-12 for additional discussion). Fan and Gijbels

(1994; 1996, pp. 151–152) discuss nearest neighbor bandwidths in the regression context.

As a practical matter, we set κ = [ωn], where ω ∈ (0, 1), n represents the sample size,

and [a] denotes the integer part of a. We optimize the choice of values for the bandwidth

parameters by minimizing the least-squares cross-validation function; i.e., we select values

[
ω̂ ĥ1

]
′

= argmin
ω,h1

n∑

i=1

[Ci − m̂−i(zi,ui)]
2
, (B.14)

where m̂−i(zi,ui) is computed the same way as m̂(zi,ui), except that the ith diagonal

element of Ψ is replaced with zero. The least-squares cross validation function approximates

the part of mean integrated square error that depends on the bandwidths.2

Once appropriate values of the bandwidth parameters have been selected, the conditional

mean function can be estimated at any point (z0,u0) ∈ R
ℓ ×D. We then estimate the RSE

and EPSE measures defined in in the text by replacing the cost terms with estimates obtained

from the relation (B.5). To make inferences about RSE and EPSE, we use the wild bootstrap

proposed by Härdle (1990) and Härdle and Mammen (1993).3 We obtain bootstrap estimates

2 Choice of κ by cross validation has been proposed by Fan and Gijbels (1996) and has been used by
Wheelock and Wilson (2001) and Wilson and Carey (2004) and others. Using np CPUs, the computation
time required for each evaluation of the cross-validation function is only slightly more than 1/np times the
time that would be required on a single processor. We performed all computations on the Palmetto cluster
operated by Clemson University’s Cyber Infrastructure Technology Integration (CITI) group. Our code
was run on nodes with dual AMD Opteron 2356, 2.3Ghz processors; each processor has 4 cores, and each
node has 16 gigabytes of memory. Hence each node is capable of running 8 threads simultaneously. To
optimize the bandwidths for the local-linear estimators using sample #1, we ran our code on 96 quad-core
processors, executing 768 threads simultaneously; the optimization required roughly 13.75 hours on each of
96 8-core nodes, or about 10,560 total CPU hours. The local-quadratic estimator requires more time to
compute than the local-linear estimator; using sample #1, optimization of the bandwidth parameters for the
local-quadratic estimator consumed roughly 221,184 hours of total CPU time. Similar costs were incurred
in optimizing bandwidths for sample #2.

3 Ordinary bootstrap methods are inconsistent in our context due to the asymptotic bias of the estimator;
see Mammen (1992) for additional discussion.
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m̂∗

b(·), which we substitute into the definitions of S and E0 in the text to obtain bootstrap

values Ŝ∗

b and Ê∗

b for particular values of z and u, with b = 1, . . . , B.

To make inference about S, we use the bias-correction method described by Efron and

Tibshirani (1993). In particular, we estimate (1 − α) × 100-percent confidence intervals

by
(
Ŝ∗(α1), Ŝ∗(α2)

)
, where Ŝ∗(α) denotes the α-quantile of the bootstrap values Ŝ∗

b , b =

1, . . . , B, and

α1 = Φ

(
φ̂0 +

φ̂0 + φ(α/2)

1− φ̂0 + φ(α/2)

)
, (B.15)

α2 = Φ

(
φ̂0 +

φ̂0 + φ(1−α/2)

1− φ̂0 + φ(1−α/2)

)
, (B.16)

Φ(·) denotes the standard normal distribution function, φ(α) is the (α × 100)-th percentile

of the standard normal distribution, and

φ̂0 = Φ−1

(
#{Ŝ∗

b < Ŝ}

B

)
, (B.17)

with Φ−1(·) denoting the standard normal quantile function (e.g., Φ−1(0.95) ≈ 1.6449).

For RSE, we sort the values in
{(

Ŝ∗

b − Ŝ
)}B

b=1
by algebraic value, delete (α

2
× 100)-

percent of the elements at either end of this sorted array, and denote the lower and upper

endpoints of the remaining, sorted array as −b∗α and −a∗α, respectively. Then a bootstrap

estimate of a (1− α)-percent confidence interval for S is

Ŝ + a∗α ≤ S ≤ Ŝ + b∗α. (B.18)

The idea underlying (B.18) is that the empirical distribution of the bootstrap values(
Ŝ∗

b − Ŝ
)

mimics the unknown distribution of
(
Ŝ − S

)
, with the approximation improv-

ing as n → ∞. As B → ∞, the choices of −b∗α and −a∗α become increasingly accurate

estimates of the percentiles of the distribution of
(
Ŝ∗

b − Ŝ
)
(we set B = 1000). Any bias

in Ŝ relative to S is reflected in bias of Ŝ∗ relative to Ŝ; in the case of large bias, it is

conceivable that the estimated confidence interval may not include the original estimate Ŝ,

since the estimated confidence interval corrects for the bias in Ŝ. We estimate confidence

intervals for the EPSE measures similarly.

9



Appendix C: Results Using Variable Specification of

Wheelock and Wilson (2001)

In order to explore the possible reasons for differences in results between Wheelock and

Wilson (2001) and our current paper, we computed the variables that were used in our earlier

paper for each of the 92 quarters 1984.Q1–2006.Q4. This resulted in 885,985 observations

available for estimation. The earlier specification contains 9 continuous right-hand side

variables; we employed the same dimension-reduction technique described in Appendix B to

reduce dimensionality to 5 continuous dimensions, sacrificing 6.72 percent of the independent

linear information in the sample. We then estimated the non-parametric cost function defined

in our earlier paper using the same local-linear estimator that we use in our current paper,

and used these estimates to construct estimates of our RSE and EPSE measures defined in

our current paper. The estimation procedure, as well as inference using bootstrap methods,

is identical to that used in our current paper; only the variable specifications differ.

Tables C.3–C.4 and Figures C.2–C.6 in this Appendix are analogous to Tables 3–4 and

Figures 2–6 in the main part of our current paper. Here as in the main part of our paper,

95-percent significance levels are used.

Appendix D: Do Banks Efficiently Minimize Costs?

The analysis in this paper is based on estimates of the conditional mean function in equation

(2.2), rather than estimates of a cost frontier. Because we use non-parametric estimators of

the conditional mean function, and due to the ensuing substantial computational burden, it

is not feasible to replace the error term in equation (2.2) with a composite error consisting

of a two-sided noise term and a one-sided inefficiency process. The mean cost function

in equation (2.2) is, however, well-defined and of interest to policy makers. If banks are

technically inefficient, then necessarily they operate in the interior of the set of feasible cost-

output combinations. The conditional mean function defined in equation (2.2) describes

what banks are actually doing, as opposed to what they might do in a perfect world with no

inefficiency.

Regardless of whether banks are technically efficient, one can ask whether banks use the

optimal amount of capital given their observed levels of outputs and other factors in equation
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(2.2). To answer this question, we estimate derivatives of the cost relation in equation (2.2)

with respect to financial equity capital (Z2) using a local-quadratic estimator (described in

the separate Appendix B, which is available from the authors upon request). Non-parametric

estimation of derivatives in multiple regression settings involves a formidable, unsolved ques-

tion of how to choose bandwidths. Theoretical results discussed in Fan and Gijbels (1996)

make clear that bandwidths for derivative estimation must be larger than those used for

estimation of the conditional mean function in order to minimize asymptotic mean square

error of the derivative estimates. However, to date, there is no tractable, reliable method for

optimizing bandwidths for derivative estimation in multiple regression problems.

To proceed, we optimize bandwidths for our local-quadratic estimator of the conditional

mean function, and then scale the optimized bandwidths by factors 1, 1.05, 1.1, 1.15, and 1.2

to estimate derivatives. Comparisons of derivative estimates across the five different scaling

factors indicates that the results are remarkably robust with respect to the choice of scaling.

In the discussion that follows, we present results obtained with the scale factor 1.1.

As noted earlier, optimization of bandwidths for estimation of the conditional mean func-

tion with the local-quadratic estimator involves a large computational burden. In addition,

computation of the local derivative estimates themselves involves substantial computational

burden, and the estimates must be bootstrapped in order to make inference. Consequently,

we focused our efforts on the last quarter represented in sample #2, i.e., 2006.Q4. Hughes

et al. (2001) suggest that the unobserved price of equity capital likely falls in the interval

[0.14, 0.18]. Following their approach, we employ one-sided bootstrap tests to test the null

that the derivative of cost with respect to equity capital is greater than or equal to −0.18,

rejection of which would suggest over-utilization of equity capital, and the null that the

derivative is less than or equal to −0.14, rejection of which would suggest that equity capital

is under-utilized. We performed these tests at levels 0.01 and 0.1; results are displayed in

Table D.1.

For the vast majority of institutions in 2006.Q4, we find evidence of over-utilization of

equity capital. Our results are similar to findings by Hughes et al. (2001) for banks up to

about $10 billion of assets, but we find that larger banks also tend to over-utilize equity

capital. To the extent that our results may differ from those of Hughes et al., this may

be due to the fact that Hughes et al. specify and estimate a translog functional form for
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costs, which we have shown to severely mis-specify the cost relation. In addition, Hughes

et al. suggest that most banks with assets ranging from $10 billion to $50 billion use optimal

levels of capital, but they arrive at this conclusion since neither null hypothesis is rejected

for most banks in this size range. However, it is important to remember that failure to reject

a null hypothesis can happen for many reasons, and does not by itself imply that the null is

true. In any case, our results suggest that banks are not allocatively efficient to the extent

that they employ too much equity capital.
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Table C.3: Expansion-Path Scale Economies (99-Percent Significance)

Year IRS CRS DRS

1984 12422 6 0

1995 9278 4 0

2006 6893 68 0
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Table C.4: Summary Statistics for Expansion-Path Scale Economy Estimates by Size-
Quartile (99-Percent Significance

Size 1st 3rd
Quartile Min Quartile Median Mean Quartile Max

—1984.Q4—

1 0.8730 0.9365 0.9420 0.9416 0.9471 0.9723
2 0.9115 0.9401 0.9449 0.9449 0.9496 0.9780
3 0.9123 0.9396 0.9444 0.9445 0.9494 0.9851
4 0.9118 0.9407 0.9451 0.9452 0.9495 0.9772

—1995.Q4—

1 0.9078 0.9366 0.9425 0.9423 0.9482 0.9734
2 0.9141 0.9395 0.9450 0.9450 0.9508 0.9772
3 0.9057 0.9396 0.9450 0.9451 0.9504 0.9823
4 0.8887 0.9394 0.9447 0.9447 0.9497 0.9818

—2006.Q4—

1 0.8788 0.9330 0.9400 0.9393 0.9460 0.9997
2 0.9026 0.9371 0.9428 0.9427 0.9488 0.9883
3 0.9094 0.9394 0.9452 0.9456 0.9516 0.9847
4 0.9064 0.9397 0.9461 0.9463 0.9524 1.0005

NOTE: For each period, summary statistics are given for the first, second, third, and fourth
quartiles of banks’ total assets.
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Table D.1: Test of First-Order Conditions for Cost-Minimizing Level of Equity Capital
(Sample #2, 2006.Q4)

1% 10%
No No

Under Reject Over Under Reject Over

full sample 0.5 1.1 98.4 0.6 0.5 98.8
≤$300 million 0.4 0.7 98.9 0.4 0.3 99.2
$300 million — $2 billion 0.9 2.7 96.4 1.4 1.3 97.2
$2 billion – $10 billion 1.6 3.2 95.2 1.6 1.6 96.8
$10 billion – $50 billion 2.5 2.5 95.0 2.5 2.5 95.0
>$50 billion 0.0 5.3 94.7 5.3 0.0 94.7

NOTE: The values in this table give the percentages of observations in sample #2 for which
inference at either 1 or 10 percent levels indicates that equity capital is under- or over-utilized
for an (unobserved) price of equity capital in the range [0.14, 0.18]. The “under” columns
report the percentages of observations for which the null hypothesis ∂C/∂Z2 + 0.18 ≥ 0
is rejected. The “over” columns report the percentages of observations for which the null
hypothesis ∂C/∂Z2 + 0.14 ≤ 0 is rejected. The columns labeled “no reject” report the
percentages of observations for which neither of these null hypotheses can be rejected; of
course, failure to reject a null hypothesis does not imply that the null is true; a statistical
test can only either reject or fail to reject the null. Sample #2 contains 6,090 observations
for 2006.Q4.
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Figure C.2: Ray Scale Economies (MBHC = 1, year 1984

theta

R
S

E

0.05 0.1 0.25 0.5 1 2 3 5 10 25 55 120

0
.1

0
.4

1
2

.7

theta

R
S

E

0.05 0.1 0.25 0.5 1 2 3 5 10 25 55 120

0
.1

0
.4

1
2

.7
Statewide Branching Limited Branching

theta

R
S

E

0.05 0.1 0.25 0.5 1 2 3 5 10 25 55 120

0
.1

0
.4

1
2

.7

Unit Banking

18



Figure C.3: Ray Scale Economies (MBHC = 1, years 1995 and 2006
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Figure C.4: Expansion Path Scale Economies by Size-Quartile, 1984
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Figure C.5: Expansion Path Scale Economies by Size-Quartile, 1995
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Figure C.6: Expansion Path Scale Economies by Size-Quartile, 2006
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