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The Use of Long-Run Restrictions for the Identification of Technology Shocks

Neville R. Francis, Michael T. Owyang, Athena T. Theodorou

The authors survey the recent empirical literature using long-run restrictions to identify

technology shocks and provide an illustrative walk-through of the long-run restricted

vector autoregression (VAR) methodology in a bivariate framework. Additionally, they

offer an alternative identification of technology shocks that can be imposed by

restrictions on the long-run impulse responses to evaluate the robustness of the

conclusions drawn by the structural VAR literature. Their results from this methodology

compare favorably with the empirical literature that uses structural VARs to identify

technology shocks.
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In many economic models, business cycles are driven by some combination of

monetary, fiscal, and technological innovations, where "technology" is often thought of

as the unexplainable component of the business cycle that is manifested as a change in

the overall productive capacity of the economy. Recently, a growing empirical literature

has undertaken the challenge of defining technology shocks and their effects on the

economy in structural statistical models.

In this paper, we survey the recent literature on long-run identified technology

shocks. We present the results of a bivariate vector autoregression (VAR) with labor

productivity and labor hours as a benchmark for the recent results found for technology

shocks. We then propose an alternative approach for identifying and studying the effects

of technology shocks.

We propose a reverse approach to that used in the structural VAR literature, the

motivation of which is to provide a robustness check of the recent results from the

existing literature. Our new methodology entails four basic steps. We first estimate the

reduced-form VAR, saving the coefficient and the error variance-covariance matrices.

Given the estimated reduced-form coefficient and covariance matrices, the second step is

to constrain the impulse response for labor productivity. Specifically, we restrict the sign

of the impulse response for productivity such that technology shocks have long-lasting

positive effects on productivity. The third step is to collect all the shocks that can

generate this long-horizon response of productivity—we call these disturbances potential

technology shocks. The final step is to examine the response of labor hours to these

shocks. Contrary to standard real business cycle (RBC) theory, recent studies in this
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literature have found that labor hours respond negatively to a positive technology shock.

We test the robustness of this result. 

The remainder of the paper is organized as follows: We define the properties of

the VAR-based technology shock and review the current empirical findings in the second

section. In the third section, we examine a standard application of long-run restrictions

used to identify technology shocks and present our (bivariate) benchmark results from

this exercise. In the fourth section, we employ an alternative form of a long-run

restriction that is adapted from the agnostic algorithm originally proposed by Uhlig

(1999).

EMPIRICAL TECHNOLOGY SHOCKS: A SURVEY

The traditional view in macroeconomics was that economic fluctuations arose

from transitory shocks, e.g., temporary shocks to monetary and fiscal policy. Secular

trends were believed not to contribute to quarter-to-quarter or even year-to-year

fluctuations in macroeconomic data. In a very influential paper, King et al. (1992)

empirically examined the effects of shifts in stochastic trends common to several

macroeconomic series. They presented an economic model with a single common

stochastic trend, interpreted as a permanent shock to productivity, that altered the steady

state of the model economy. This stochastic trend, the unit root in productivity, is now

widely referred to as a “technology shock”; currently, the challenge for macroeconomists

is how to more accurately identify this measure of technology shocks.

The growth accounting approach proposed by Solow (1957) has been widely used

to identify technology shocks. Under the assumption of competitive markets and constant



4

returns to scale in production, total factor productivity (or the Solow residual) is that part

of output that is left unexplained after accounting for the contributions of capital and

labor. A typical growth accounting equation would be of the form:

log( ) log( ) ( ) log( ) log( )Y L K A
t t t t
= + − +γ γ1 ,

where Y
t
 is period- t  output; K

t
 and L

t
 are period- t  capital and labor, respectively; γ  is

the labor share of output; and A
t
 is the so-called Solow residual.

Innovations to the Solow residual were thought of as shocks to technology.
1

However, there are three potential shortcomings with the use of the Solow residual as a

proxy for technology shocks. First, growth accounting does not incorporate either

workers' effort or capital utilization. Thus, embedded in the residual A
t
are these

confounding measures that have nothing to do with technology shocks. Second, the

probability of technological regress using the Solow residual is of the order of 40 percent,

which is implausible to some economists. It is not apparent that the structural VAR

(SVAR) method overcomes this criticism, implying that it is nearly equally likely to have

technological regress as progress. Third, the measure failed what is now referred to as the

Hall (1988) and Evans (1992) tests. These studies found that the Solow residual is

correlated with other exogenous shocks—such as shocks to money, interest rates, and

government spending—that are not related to technology.
2

These shortcomings led economists either to seek to improve upon the Solow

residual or search for an alternative measure of technology shock. Basu, Fernald, and

Kimball (1998) sought to improve upon the Solow residual by incorporating unobserved

                                                          
1 This view is not the consensus of the growth accounting literature. For example, Denison (1979) views

productivity as a measure of society’s ability to increase standards of living.
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factor inputs into their estimations. They followed Hall (1990) and regressed the growth

rate of output on the growth rate of inputs at a disaggregated level with proxies for

capacity utilization. Technological change is then defined as an appropriately weighted

sum of the resulting residuals. They found that technological improvements contradict

RBC theory predictions about the (technology-driven) co-movement of labor hours and

productivity across the business cycle; specifically, hours fall, at least in the short-run,

when hit with a productivity-improving technology shock.

The search for an alternative measure of technology shocks has proceeded along

two lines. The first line of research concerns the assumption(s) used to identify

technology shocks. The second line involves the choice of data used to identify

technology shocks and asks: Are technology shocks either (i) a manifestation of the

unexplained component of labor productivity or output or (ii) the culmination of research

and development?

Proceeding along the first line of research, Gali (1999) attempted to disentangle

technology and non-technology shocks by analyzing labor productivity and hours of

employment. He estimated a structural VAR with the key identifying assumption that

technology shocks alone can produce long-run effects on labor productivity.
3
 Gali

estimated a bivariate model of productivity and hours.
4
 He found that hours fell in

response to a shock that permanently raised labor productivity (the technology shock).

Gali thus concluded that technology shocks were not the driving force behind cyclical

                                                                                                                                                                            
2 King and Rebelo (1999) provide a comprehensive survey of the RBC literature. In particular they

highlight the features of the RBC model, e.g., indivisible labor and capital utilization, that generate

business-cycle-like second moments while correcting for the failures of the Solow residual.
3 In a bivariate framework, the employed identification is equivalent to a Wold causal chain structure in the

long run.
4 Gali (1999) also estimates a five-variable model that includes money, inflation, and interest rates. Results

from this model are consistent with the bivariate framework.
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fluctuations and that his “non-technology” shocks better explained the short-run

movements in aggregate economic data. Kiley (1998) followed Gali and applied a similar

methodology to 17 two-digit manufacturing industries. He found that, for a majority of

these industries, technology shocks identified by these structural VARs produced the

same negative hours response as found for the aggregate data. 

Francis and Ramey (2002) used Gali as a starting point in their recent analysis of

technology shocks. Using the structural VAR approach, they reexamined Gali's work by

first testing whether the shocks identified in this framework can be plausibly interpreted

as technology shocks. They first derived additional long-run restrictions and used them as

overidentifying tests. For example, they estimated a model of real wages and hours with

the assumption that only technology shocks can have permanent effects on real wages. If

this assumption is true then real wages and productivity should share a common trend, an

assumption not rejected by the data.
5
 Next, they augmented Gali's basic model with data

on real wages, investment, and consumption and determined whether the impulse

responses for these variables accorded with theory. Finally, they tested whether their

technology shocks were Granger-caused by exogenous events unrelated to technology as

per Hall (1988) and Evans (1992). Their measure of technology survived the scrutiny of

all three tests. However, they still found that labor hours responded negatively on impact

to a technology shock.
6

                                                          
5 The first-order condition states that workers are each paid their marginal product. Therefore, it stands to

reason that the same assumption for the effect of technology shocks on labor productivity must also hold

for technology shocks on real wages.
6 Christiano, Eichenbaum, and Vigfusson (2003) and Uhlig (2002) challenge the results of the

aforementioned literature. They claim that hours entered in levels would overturn the negative short-run

hours response when a technology shock hits the economy. However, Francis and Ramey (2003) in another

unpublished manuscript show that hours, properly detrended, experiences a decline on impact of a

technology shock.
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Shea (1998) proceeded along the second line of research. He used data on both

patents and research and development to identify technology shocks and found that hours

fell in response to a technology shock. However, unlike the above studies, the decline in

hours is a long-run response—that is, hours rise in the short-run but then eventually fall.

In sum, using different methodologies to identify technology shocks, these recent

lines of research have produced similar results. Further, the identified technology shock is

unable to explain a substantial proportion of the variation in hours across the business

cycle. Our contribution will be to add a fourth methodology that provides a robustness

check of the structural VAR results.

IMPLEMENTING LONG-RUN RESTRICTIONS

In this section, we present a bivariate long-run restricted structural VAR model of

productivity and hours as a benchmark to the technology literature. Essentially, this

section reproduces the bivariate results described in Gali (1999) and Francis and Ramey

(2002).
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Data

The data are quarterly and cover the period 1948:Q1 to 2000:Q4. The labor

productivity series is from the Bureau of Labor Statistics (BLS) “Index of output per

hour, business,” while the labor hours series is from the BLS “Index of hours in

business.” We tested and failed to reject unit roots for both labor productivity and hours;

therefore, in our benchmark VAR specification, we enter these series in first differences.

Productivity and labor are also not cointegrated. We use four lags of the dependent

variables in each equation of the VAR. The lag length was chosen by means of the

Schwarz (BIC) criterion.

Econometric Framework

The recent methodology of choice in the technology shock literature is the

structural VAR, a standard reduced-form VAR with additional restrictions that are drawn

from theory to separate and identify the components of the residuals. These restrictions

can be short-run (often comprising short-run restrictions or the impact effects of shocks)

or long-run. A discussion of long-run restrictions follows.

Consider the following k -lag VAR:

( )
t t

L Y εΦ = ,

where 

Y
x

n
t

t

t

=
L
NM
O
QP

∆
∆

 ,

ε
ε

εt

t

x

t

n
=
L
N
MM
O
Q
PP

,
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and ( )LΦ  is a k th-order matrix polynomial in the lag operator. The VAR can be

rewritten in its moving average (MA) representation:

(1) Y C L
t t
= ( )ε ,

where ( )C L  is a (infinite) polynomial matrix in the lag operator 1( ) ( )L C L
−Φ = . The

series x
t
 denotes the log of labor productivity, and n

t
 denotes the log of labor hours. We

label ε
t

x  the technology shock and ε
t

n  the non-technology shock, and we make the usual

assumption that these shocks are orthogonal and serially uncorrelated. 

For ease of exposition, it is useful to rewrite (1) as

(2) Y
C L C L

C L C L
t

t

x

t

n
=
L
NM

O
QP
L
N
MM
O
Q
PP

11 12

21 22

( ) ( )

( ) ( )

   

   

ε

ε
. 

We impose long-run restrictions to identify the technology shock, ε
t

x . Each of the

matrices in (2) is a polynomial in the lag operator. To achieve exact identification, we

restrict the non-technology shock's long-run impact on productivity to be zero. This

assumption identifying the technology shock implies that C12 1 0( ) = , which restricts the

unit root in productivity to originate solely from the technology shock.
7
 The identifying

restrictions do not restrict the effect the technology shock can have on hours at either the

long or short horizon.
8

We estimate the model using the method proposed by Shapiro and Watson

(1988). By using this method we can estimate the equations in the VAR one at a time.

The productivity equation is as follows:

                                                          
7 In principle, the model presented above could be augmented to measure the effects of shocks on other

variables (see Gali, 1999, and Francis and Ramey, 2002). The identification scheme here assumes that any

other shock, regardless of the size of the system, has no long-run effect on labor productivity.
8 It can be shown that the identification scheme explained here are equivalent to a Wold causal chain on the

steady-state structure of the model (see Rasche, 2000).
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(3)
1

2

, ,

1 0

p p
x

t xx j t j xn j t j t

j j

x x nα β ε
−

− −
= =

∆ = ∆ + ∆ +∑ ∑ , 

where ∆2  is the square of the difference operator. Imposing the long-run restriction is

equivalent to restricting the hours variable to enter the productivity equation (3) in double

differences.
9
 Because the current value of ∆2

n
t
 will be correlated with ε

t

x , we estimate

this equation using instrumental variables. We use lags 1 through p  of ∆x
t
 and ∆n

t
 as

instruments. The hours equation is then estimated as follows:

(4) , , ,

1 1

p p

x n

t nx j t j nn j t j n x t t

j j

n x nα α ρ ε ε− −
= =

∆ = ∆ + ∆ + +∑ ∑ . 

Technology ε
t

x  enters into the hours equation (4) in order to achieve orthogonality

between the technology and non-technology shocks. We estimate the hours equation

using ordinary least squares, since there is no contemporaneous independent variable that

would be correlated with the residual ε
t

n . The Shapiro-Watson methodology, applied to

the same data, produces results identical to the matrix method used by Gali.
10

 We present

results from an illustrative two-variable system in the next subsection.

Benchmark Results

Figure 1 presents the impulse responses from a shock to technology in the

bivariate model of labor productivity and hours.
11

 Labor productivity immediately rises

by 0.8 percent, displays a hump-shaped pattern, and eventually settles to a new steady

                                                          
9 Labor hours enters in double differences because we assume that labor hours has a unit root. If the labor

hours series were stationary, then, to impose long-run restrictions, we would enter hours into the

productivity equation in first differences.
10 The interested reader is directed to Appendix A for a detailed derivation of the long-run restriction

methodology. There, we demonstrate the equivalence between the matrix method and the Shapiro-Watson

method of long-run identification.
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state approximately 0.8 percentage points above its pre-shock level. This persistent rise in

productivity is at the heart of the identification, as only the technology shock can have

this permanent positive effect.

<<Figure 1 about here>>

The hours response is somewhat curious. On impact, labor hours experience a

statistically significant decline in response to the technology shock; moreover, the point

estimate for the response remains negative for the entire response period. However,

according to the 95 percent bootstrapped confidence bands, the decline in labor hours is

statistically significant for only two quarters; thereafter, it is insignificantly different from

zero.

<<Figure 2 about here>>

The responses of labor productivity and hours to a non-technology shock—the

shock that, according to Gali (1999), coincides with cyclical fluctuations—are shown in

Figure 2.
12

 Labor productivity gradually rises for about a year, but eventually the effect of

the non-technology shock on productivity disappears over time. On the other hand, the

non-technology shock has a permanent impact on hours worked. Following the shock,

hours worked increases for about one year, displaying a hump-shaped pattern, and

eventually reaches a new steady state higher than its pre-shock level.

IMPULSE RESPONSE RESTRICTIONS

In this section, we demonstrate how long-run restrictions can be implemented in a

framework that leaves the structural parameters of the VAR unrestricted but, instead,

                                                                                                                                                                            
11 Note that this is identical to Figure 1a in Francis and Ramey (2002).
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imposes sign restrictions on the resulting impulse responses (see Uhlig, 1999).
13

 We can,

therefore, estimate the model without imposing the exact restrictions on the estimated

parameters, as in the long-run identification schemes of Blanchard and Quah (1989) and

Shapiro and Watson (1988). We search for shocks that produce impulse responses

consistent with what we believe technology should produce, i.e., a long-run positive

response to labor productivity. Our goal is to determine the robustness of the results

found in the preceding section by determining the percentage of long-run effective shocks

that produce an hours/productivity negative co-movement.

 An additional advantage to this approach, which we leave to be exploited by further

research, is that hypothetical responses can be posed. The resulting shocks required to

induce those responses can be computed and used to perform counterfactual experiments.

In this sense, we can work backward to test the validity of our assumptions about the

effects of the shocks by performing, say, exogeneity tests.
14

 

Framework

Here, we outline the methodology that incorporates restrictions on the signs of the

impulse responses to identify the model. What we are doing, in essence, is defining how a

type of shock should effect the economy and determining which shocks might generate

those results. While, to the casual reader, this identification might seem to be constructed

backward, it has theoretical foundations that are detailed in Appendix B.

                                                                                                                                                                            
12 We refrain from attributing any structural interpretation to the non-technology shock. This shock can be

thought of as a combination of a number of shocks that remain unidentified within our system.
13 Other ex post restrictions could also be employed. Examples of these include restricting the forecast error

variances (Faust, 1998) or the cross-correlation (Canova and De Nicolo, 2002).
14 An example of this line of research can be found in Francis and Owyang (2003).
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Formally, the reaction to the reduced-form shock ( te  from Appendix B) cannot be

interpreted in a structural context. However, it can be shown that the structural shock e t

is related to the reduced-form shock by means of the contemporaneous impact matrix 0A :

1

0t te A ε−= ,

where 1 1

0 0A A− − ′ = Σ . Thus, the j th column of the matrix 1

0A
−  can be interpreted as the

contemporaneous effect of the j th fundamental shock (which we will call an impulse

vector). However, this decomposition is not unique; for any orthonormal matrix Q ,

1 1

0 0A QQ A− − ′′ = Σ  is also a permissible decomposition. In the previous section, we

distinguished between acceptable rotations by imposing restrictions on the form of the

rotation matrix Q .

The identification technique we employ in this section involves sampling from the

distributions for both the coefficient and covariance matrices that are estimated from the

model's reduced form. We draw a candidate impulse vector and compute the impulse

response; each impulse vector that generates an impulse response consistent with a

predetermined set of sign restrictions is saved.
 15

 Iteration of this process generates a

distribution for the impulse vectors we will call technology shocks.

While the methodology utilized in the previous section uniquely identified an

(estimated) reduced-form shock, the technique in this section estimates a distribution for

this shock. Exact identification using this technique requires a large number of

restrictions, since the constraints on the impulse responses may not bind at all horizons.

                                                          
15 Mathematical details for the estimation and identification can be found in Appendix C. For an explicit

discussion of the relationship between the impulse vector and the identified structural shock, see Uhlig

(1999).
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Thus, instead of imposing, for example, an explicit causal ordering, we are able to define

the technology shock based on its ex post impulse response for certain variables. We

concentrate on identification of the technology shock. In principle, other shocks that are

effect-orthogonal, i.e., have sets of mutually exclusive restrictions, could also be

identified.

A number of recent papers have employed this algorithm to impose sign

restrictions on impulse responses. Uhlig (1999, 2001) and Owyang (2002) restrict the

responses of both inflation and interest rates to identify a monetary shock. Mountford and

Uhlig (2002) impose restrictions on revenues, expenditures, and deficits to identify fiscal

shocks. However, these applications of the algorithm have centered primarily on the

short-run responses to shocks. Here, we can adapt the algorithm to test for restrictions at

long horizons. In this application, we constrain the long-run response of labor

productivity to a technology shock to be positive.
16

 

Empirical Results

The system that we estimate is a VAR with prior distributions on the parameters

that we describe in Appendix C. We make 1000 draws from the posterior distributions

generated by estimating the VAR. For each draw from the parameter space, we draw

1000 candidate shocks.
17

The distributions of the impact effects on the two-system variables are shown in

Figure 3. We include the point estimates of the impact effects for the exactly identified

                                                          
16 In addition to long-horizon restrictions on the productivity response, we also impose impact restrictions.

We assume that a positive technology shock raises productivity on impact.
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shock from the previous section. Labor productivity’s impact response from the SVAR

lies to the right of the mean of the impact distribution from the sign-restriction algorithm.

That is, the initial productivity response from the SVAR is greater than the mean impact

response obtained from the sign-restriction algorithm. However, the opposite is true for

the hours response. That is, the hours response from the SVAR lies to the left of the mean

of the impact distribution from the sign-restriction approach. Therefore, the sign-

restriction algorithm produces initial hours responses that are invariably less negative

(i.e., closer to zero) than the impact response obtained from the SVAR with long-run

restrictions. In this sense the sign-restriction approach is less restrictive than the SVAR

approach but nevertheless produces an initial hours response that is negative on

average.
18

<<Figure 3 about here>>

The resulting mean impact effects of the identified technology shock are 

0.62
ˆ

0.31
a

 
=  − 

,

(0.62 for labor productivity and -0.31 for labor hours), and the associated impulse

responses are illustrated in Figure 4.
19

 For the long-horizon sign-restriction algorithm, we

compute the responses out to 40 quarters. Consistent with the findings above, this

                                                                                                                                                                            
17 We forgo identification of the hours shock in this section. Identification of this shock can be achieved

either through independent draws or by utilizing an orthogonality assumption to decompose the system

residuals.
18 The same is true when the sign-restriction algorithm has hours entering the VAR in levels. This means

that the SVAR with hours in levels does not impose enough restrictions to identify technology shocks.

These VARs will therefore have their non-technology shocks having long-lasting effects on productivity,

contrary to the initial identifying assumption. Our algorithm with hours in levels imposes enough ex post

restrictions to circumvent such problems and thus produces negative labor hours results just like its first-

differenced counterpart. See Francis and Ramey (2003) for further exposition. 
19 Figure 4 shows the mean response of the technology shock over the saved draws. In addition, we provide

a coverage interval that shows the interior 60 percent of the distribution of effects. We do not provide

standard error bands since the distributions for the impulse responses may be non-normal.
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estimation presupposes that labor hours possess a unit root and are entered in differences.

The productivity response to a technology shock is positive on impact and converges to a

steady-state value of 0.6 percent approximately eight periods after the initial shock. The

algorithm imposes a rise in labor productivity in the tenth year.
20

 However, we note that

the response to a technology shock for the majority of prior periods turns out to also be

positive.

<<Figure 4 about here>>

Next, note that the average labor hours response is negative on impact. In fact, in

approximately 95 percent of the accepted draws, the candidate technology shock

produces a negative response of hours on impact. However, on average, the decrease in

hours is not permanent. Based on our findings using this impulse response–restricted

algorithm, we cannot reject the hypothesis that a technology shock causes labor hours to

fall on impact. This conclusion stems from our ability to draw a variety of candidate

shocks, which produce both long-run productivity responses and negative hours

responses.
21

<<Figure 5 about here>>

Finally, note that the coverage intervals in Figure 4 are relatively large compared

with the error bands associated with the structural VAR in the preceding section. Recall

that the technology shock produced by the impulse response–restricted algorithm is not

exactly identified—that is, the algorithm identifies only a distribution for the candidate

shocks. Exact identification requires further restrictions, and each additional (binding)

                                                          
20 In other words, we calculate the impulse responses for 40 periods and impose that the productivity

response from the 37th to the 40th periods be positive.
21 We performed a similar analysis using labor hours in levels. We found that the hours response to a

positive technology shock is still, on average, negative on impact.



17

restriction contributes to a narrowing in the coverage intervals. As an example of this,

consider Figure 5. Here, we have identified the technology shock with the additional

restriction that imposes long-run neutrality of technology on hours, i.e., the impulse

response of hours to a technology shock is negligible at long horizons. In particular,

notice that the coverage interval for the hours response is much narrower and that, in this

case, a positive hours response on impact is even rarer.

CONCLUSION

Economists have long assumed that one of the primary components of the

business cycle is shocks to technology that produce long-run changes in labor

productivity. In this article, we surveyed some recent papers that attempted to identify

such shocks. We especially focus on papers using the structural VAR approach, with its

accompanying long-run restrictions, to identify technology shocks.

Recent results using the structural VAR approach to identify technology shocks

have shown that they induce a negative impact response of labor hours. Further, using a

long-horizon impulse response–restricted system, we generated “technology” by

assuming that it is the only shock with a long-horizon impact (say, out to ten years) on

labor productivity. Technology shocks generated with this methodology invariably

produce the (non-standard) negative labor hours impact result. That is, the probability of

having a fall in hours is found to be greater than the probability of having a rise in hours

for technology generated in this manner, regardless of whether the VAR is estimated with

labor hours in levels or hours in first differences.
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Future research could apply the impulse response–restricted technique in larger

macroeconomic models instead of the bivariate model employed here. From this we

could examine which technology shock, from labor hours in levels or in first differences,

produces the more plausible impulses for variables such as consumption, investment, and

real wages. Future research should also examine which measure of technology stands up

to the scrutiny of the Hall-Evans tests as per Francis and Ramey (2002).

Appendix A

Recall from (1) the MA representation of the VAR, reproduced here for

convenience :

( )
t t
Y C L ε= ,

where we have implicitly assumed that ( )C L  is invertible and 1( ) ( )C L L
− = Φ  and ( )LΦ

is the matrix polynomial in the lag operator and the roots of | ( ) |zΦ  are outside the unit

circle. From the assumption that only technology can have long-run effects on

productivity, (1)C  is lower triangular, which implies that (1)Φ  is also lower triangular.
22

The first equation of ( )
t t

L Y εΦ =  then becomes 

(A.1.1) , ,

1 0

p p
x

t xx j t j xn j t j t

j j

x x nα α ε− −
= =

∆ = ∆ + ∆ +∑ ∑ .

Since (1)Φ  is lower triangular, the long-run multiplier on 
t
n∆  is identically zero, so the

coefficients of its lags sum to zero. (Note, we do not impose any short-run dynamics so

the contemporaneous value of 
t
n∆  appears in the productivity (

t
x∆ ) equation.) 

Imposing this constraint yields



19

1
2

, ,

1 0

p p
x

t xx j t j xn j t j t

j j

x x nα β ε
−

− −
= =

∆ = ∆ + ∆ +∑ ∑ .

The preceding equation is only a matter of algebra. The equivalence of the two methods

is shown in the example below for a particular lag length.

Set 4p = .
23

 Then, rewrite (A.1.1) as

(A.1.2)

,1 1 ,2 2 ,3 3 ,4 4

,0 ,1 1 ,2 2 ,3 3 ,4 4 .

t xx t xx t xx t xx t

x

xn t xn t xn t xn t xn t t

x x x x x

n n n n n

α α α α

α α α α α ε

− − − −

− − − −

∆ = ∆ + ∆ + ∆ + ∆

+ ∆ + ∆ + ∆ + ∆ + ∆ +

In this case, the long-run restriction C12
(1) 

= 0 of lower triangularity implies

(A.1.3) ,0 ,1 ,2 ,3 ,4 0.xn xn xn xn xnα α α α α+ + + + =

Thus, we have

4

, ,0 ,1 1 ,2 2 ,3 3 ,4 4

1

t xx j t j xn t xn t xn t xn t xn t

j

x x n n n n nα α α α α α− − − − −
=

∆  =  ∆  +  ∆  +  ∆  +  ∆  +  ∆  +  ∆∑

4

, ,0 1 ,0 ,1 1 2

1

,0 ,1 ,2 2 3 ,0 ,1 ,2 ,3 3 4

,0 ,1 ,2 ,3

] [ ] ( )

[ ] ( ) [ ] ( )

[

xx j t j xn t t xn xn t t

j

xn xn xn t t xn xn xn xn t t

xn xn xn xn

x n n n n

n n n n

α α α α

α α α α α α α

α α α α

− − − −
=

− − − −

=  ∆  +  [∆  − ∆  +  +  ∆  − ∆

  +  +  +  ∆  − ∆  +  +  +  +  ∆  − ∆

  +  +  +  + 

∑

,4 4]xn tnα − +  ∆

.

Restriction (A.1.3) implies that the coefficient on 4tn −∆  is identically zero. Thus, we have

(A.1.4)

4
2 2

, ,0 ,0 ,1 1

1

2 2

,0 ,1 ,2 2 ,0 ,1 ,2 ,3 3

( )

( ) ( ) .

t xx j t j xn t xn xn t

j

x

xn xn xn t xn xn xn xn t t

x x n n

n n

α α α α

α α α α α α α ε

− −
=

− −

∆ = ∆ + ∆ + + ∆

+ + + ∆ + + + + ∆ + 

∑
 

We rewrite this as

                                                                                                                                                                            
22 We are essentially imposing that the system is a Wold causal chain structure in the steady state.
23 We arbitrarily choose four lags but the results will hold true for any general lag length.
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(A.1.4’)
4 3

2

, ,

1 0

x

t xx j t j xn j t j t

j j

x x nα β ε− −
= =

∆ = ∆ + ∆ +∑ ∑ ,

where the β  are functions of the α . Note that equation (A.1.4’) here is identical to (3).

The hours equation (4) is straightforward. Note that we do not require the

contemporaneous value of 
t
x∆  in the hours equation since x

t
ε  enters into equation (4)

directly. 

Appendix B

Consider the reduced-form VAR

A L Y et t( ) = ,

where A L( )  is a ( )n n×  matrix of lag polynomials and e Nt ~ ( , )0 Σ . We can rewrite this

VAR in its MA( )∞  representation:

Y B L et t= ( ) ,

where B L A L( ) ( )= −1 . The model residuals et  have no structural interpretation; the

objective of this exercise is to identify the structural shocks ε t  defined in the third

section, on implementing long-run restrictions. This can be accomplished by imposing

restrictions on either the contemporary impact matrix or by imposing effect restrictions

on the long-run multipliers Cij ( )1  defined in (2). Once the structural shocks ε t  are

identified, the s-period-ahead response to shock ε t
i  can be computed by

(A.2.1)  
( ) it s

s ti

t

E Y
C

Y
ε+∂

=
∂

,
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where sC  is the lag s matrix derived from the MA representation, *s sC B R= and

1

t tR eε −= . R is a (rotation) matrix that maps the reduced form into the structural form

and, thus, depends on the nature of the restrictions imposed.

Since B L( )  is generated from the reduced-form estimation, one can easily see

that sufficient restrictions on the left-hand side of (A.2.1) can be used to uniquely identify

C(L) and ε t

i . The alternative identification that we impose in the fourth section of the

paper takes a decidedly different tack. Instead of imposing restrictions on either the

contemporary impact matrix or the long-run multipliers, we restrict the impulse responses

(A.2.1) directly. Since our algorithm imposes only sign restrictions, which may not be

binding, we do not exactly identify the structural shock. Instead, we must draw candidate

shocks and test whether the sign restrictions are violated. This allows us to identify a

distribution of structural shocks which we use to test the robustness of the conclusions

drawn from the estimation in the third section of the paper.

Appendix C

We begin with the reduced-form, four-lag VAR:

(A.3.1)
4

1

t i t i t

i

Y DY e−
=

= +∑ ,

where the Di’s are the lag i  coefficient matrices, ( ) ( )I D L A L− = , and ei’s are the i.i.d.

reduced-form residuals with covariance matrix Σ . It is convenient to stack the system

(A.3.1) in the following manner:

(A.3.2)  = +Y XD e ,
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where 1 2[ , ,... ]kD D D ′=D , Y = ′[ , ,... ]y y yT1 2 , X y y yt t t t k= ′ ′ ′ ′− − −[ , ,... ]1 2 ,

X = ′[ , ,... ]X X XT1 2 , and e = ′[ , ,... ]e e eT1 2 . Here, T  is the sample length and k  is the lag

order ( k = 4  in our case).

The system (A.3.2) can be estimated as a VAR with a normal-inverted Wishart

prior conjugate distribution with parameters v
0
, N

0
, 0δ , and S

0
. Then, the VAR

parameters can be drawn from the joint posterior distribution, also a normal-inverted

Wishart distribution centered on δ  and S  with v  degrees of freedom and precision

matrix N . The parameters for the posterior distribution are given by

v T v= + 0 ,

N N= + ′0 X X ,

1

0 0( )N N Dδ δ− ′= +XX ,

10
0 0 0 0

1ˆ ( ) ( )
v T

S S D N N D
v v v

δ δ−′ ′= + Σ + − −XX ,

where 1( )D −′ ′= XX XY  and ˆ ( ) ( )D D′Σ = − −Y X Y X .
24

We can characterize the impulse vector θ̂  by

ˆ Qθ ϑ= ,

where QQ′ = Σ  is the Cholesky decomposition of the state-dependent covariance matrix

and ϑ  is a vector drawn from the unit circle. The Cholesky factorization does not impose

a causal ordering in this case but provides a means of orthogonalizing the shocks.
25

 We

then apply (A.3.3) and (A.3.4) to generate impulse responses and test them against the

                                                          
24 In estimating the Bayesian VAR (A.3.2), we utilize uninformative priors. That is, we assume v0 0=  and

N n0 0= ~
, with S

0
 and 0δ  arbitrary. This makes (A.3.2) a simple reduced-form VAR.

25 See Mountford and Uhlig (2002) for a discussion of the use of the Cholesky factorization.
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restriction matrix R . Any θ̂  that satisfies the restrictions on yt j+  is retained. Multiple

iterations over a single set of sampled model parameters yield a distribution for the

shocks, ( ), ,RΘ ΣD .
26

Suppose the impulse response to any vector innovation θ  can be defined as

(A.3.3) j

t jy θ+∆ = Γ , 

where 1 2( 1)[ ,0 ]kθ θ × −
′ ′=  and the ( )2 2k k×  impulse-generating matrix Γ  is defined by

(A.3.4)
2( 1) 2( 1) 20k kI − − ×

′ 
Γ =  

  

D

. 

Here, D  is the stacked coefficient matrix, I k2 1( )−  is the 2 1 2 1( ) ( )k k− × −  identity matrix

and 
~

( )02 1 2k− ×  is a 2 1 2( )k − ×  matrix of zeros.

The algorithm for identifying the technology shock is as follows: The impulse

response to any shock θ̂  can be calculated using (A.3.3) and (A.3.4). The shock θ̂  is

associated with a restriction matrix R  that is invariant to the state of the economy. R  is

an ( )n l×  matrix that represents the priors that we impose on the response of model

variables to the incidence of a shock θ̂  out to a horizon l . Our identification centers on

the selection of the shock θ  that produces an impulse response satisfying the restriction

matrix R .

 

                                                          
26 Our characterization of the impulse vector space is slightly different from Uhlig (1999). He implicitly

assumes that the sign restrictions on the impulse response functions hold out to horizon l , and he

characterizes the space as ( ), , lΘ ΣD . Since we will impose long-run restrictions, it is beneficial to denote

the impulse vector space as dependent on a restriction matrix R .
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Figure 3:Distributions of the Impact Effects on the Two-System Variables
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