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Abstract

We investigate the power and size performance of unit root tests when the data undergo Markov

regime switching. All tests, including those robust to a single break in trend growth rate, have

low power against a process with a Markov-switching trend. Under the null hypothesis, we find

previously documented size distortions in Dickey-Fuller type tests caused by a single break in

trend growth rate or variance do not generalize to most parameterizations of Markov switching in

trend or variance. However, Markov switching in variance can lead to overrejection in tests

allowing for a single break in the level of trend.

Keywords: Stochastic Trend, Deterministic Trend, Heteroskedasticity, Business Cycle

Asymmetry
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For the past 20 years the question of whether various economic time series have a unit root or

are (trend) stationary has generated much research. Using standard tests many researchers are

unable to reject the unit root null hypothesis for macroeconomic and financial time series such as

GDP, interest rates, and exchange rates (Nelson and Plosser 1982). Perron (1989) argues that the

evidence in favor of unit roots has been overstated, as standard tests have low power against

trend stationary alternatives with structural breaks in trend level or growth rate. Perron remedied

this problem by modifying the Augmented Dickey-Fuller test with dummy variables to account

for a single structural break. Christiano (1992), Banerjee, Lumsdaine and Stock (1992), and

Zivot and Andrews (1992) extend this methodology to endogenous estimation of the break date

while Lumsdaine and Papell (1997) consider a test robust to two structural breaks. Hereafter we

will refer to this class of tests as Perron-type tests. Leybourne, Mills and Newbold (1998) and

Hamori and Tokihisa (1997) demonstrate a converse problem, that standard unit root tests reject

too often when there is a single structural break in trend or variance under the null hypothesis.

While most of the literature has focused on the effects of a fixed number of structural breaks

on unit root tests, there is a growing consensus that the number of regime changes in economic

time series might be better modeled as arising from a probabilistic process. To this end, many

authors have successfully used Hamilton’s (1989) Markov-switching model to capture regime

change in a diverse set of macroeconomic and financial time series. It is thus natural to ask what

effects Markov-switching regime change might have on unit root tests, including the Perron-type

tests developed to mitigate the effects of a fixed number of structural breaks.

Examples where this issue might be relevant are not hard to find. Evans and Wachtel (1993)

suggest an I(1) Markov-switching trend model for prices after standard unit root tests on the

price level failed to reject. Garcia and Perron (1996) argue for an I(0) Markov-switching trend
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and variance model of inflation and real interest rates based on unit root tests performed by

Perron (1990) suggesting these series were I(0) if one break in the level of trend is allowed.

Finally, many studies that employ a Markov-switching variance or trend growth rate simply

assume a unit root in the series of interest without any pretesting, most likely because unit root

tests from previous studies suggest the series are I(1). Examples include Hamilton’s original

paper for GNP, Cecchetti and Mark (1990) for consumption and dividends, and Engel (1994) for

the nominal exchange rate.

In this study we investigate the effects of several types of Markov regime switching on unit

root tests, focusing on regime change in trend growth rate and variance, the form of structural

change most often considered in the macroeconomics and finance literature. The literature

surrounding structural breaks and unit root tests provides insight into the size and power effects

of a fixed number of breaks in trend growth rate on standard unit root tests. However, it is not

clear that these results generalize to the case of endogenous, Markov-switching breaks in trend.

Perhaps the closest to addressing this question is Balke and Fomby (1991) who demonstrate that

standard unit root tests continue to have low power when a series has endogenous, probabilistic

breaks in trend growth rate. However, the process driving their breaks is an independent

Bernoulli process, not a Markov-switching process, and they do not consider the performance of

Perron-type tests. With regards to regime change in variance, several authors have considered the

effects of GARCH type heteroskedasticity on unit root tests, for example Pantula (1988), Kim

and Schmidt (1993), Seo (1999) and Hecq (1995), the latter considering the effects on Perron-

type tests. However, the effects of Markov-switching in variance has not been considered. The

only studies the authors are aware of investigating the effects of Markov regime change in a

testing framework are Evans and Lewis (1993) and Hall, Psaradakis and Sola (1997) who
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conclude that Markov switching in trend growth rate or in the cointegrating vector will weaken

the evidence in favor of cointegration in a bivariate system.

The paper is organized as follows: In Section 1 we evaluate the performance of unit root tests

when the true data generating process undergoes regime switching in trend growth rate but is

otherwise I(0). In line with previous literature, we find that standard unit root tests do a poor job

of distinguishing this model from an integrated process. However, we also find that Perron-type

tests have low power in this case. The Markov-switching trend model has often been used to

model business cycle asymmetry. Thus, we also consider alternative Markov-switching models

of business cycle asymmetry, in particular a model by Kim and Nelson (1999) which allows

regime switching in the transitory component. Unit root tests have very good power against this

generating process, indicating that the true nature of nonlinearities in the business cycle is very

important for what effects these nonlinearities have on unit root tests. Finally, we briefly

consider a model with Markov-switching autoregressive parameters. Such a model, with one

regime an I(1) process and the other stationary, has been used by several authors, for example

Ang and Bekaert (1998), to model interest rates. Standard tests have very low power against this

process for empirically plausible parameterizations. In Section 2 we evaluate the performance of

unit root tests when the true data generating process is I(1) in addition to the Markov switching.

The size distortions pointed out in the literature for a single break in trend growth rate or

variance do not generalize to most parameterizations of Markov switching. However, similar to

the findings of Hecq (1995) for IGARCH errors, Markov switching in variance can cause

significant overrejection in Perron-type tests that allow for a single structural break in level.

Section 3 concludes.
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1. THE POWER OF UNIT ROOT TESTS AGAINST REGIME-SWITCHING ALTERNATIVES

1.1 Regime Switching in the Trend Component

In this section we investigate the power of unit root tests, including Perron-type tests, when

the true process is I(0) conditional on a Markov-switching trend growth rate. To begin, consider

the following data generating process:
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where 
t

S  is a discrete, unobserved state variable that takes on the value 0 or 1, tτ  is a trend

component with a switching growth rate, and )(Lφ  is a lag polynomial with either all roots

outside the unit circle or one root on the unit circle and the rest outside. In this paper we consider

the case where tS  is first order Markov switching. Here, the value of 
t

S  at time t depends only

on its value at time t-1, such that 111 )1|1( pSSP tt === −  and 001 )0|0( pSSP tt === − .

The model in (1) is a version of the models given in Hamilton (1989) and Lam (1990). In

Hamilton (1989), one root of )(Lφ  is restricted to unity, that is tc  has a stochastic trend. We will

consider Hamilton’s version of (1) in Section 2. Lam (1990) generalizes Hamilton’s model to

allow tc  to (possibly) be a stationary autoregressive process. In this section we consider the

performance of unit root tests in this case, where all roots of )(Lφ  lie outside the unit circle.

Here, innovations do not have permanent effects in the periods between shifts in the growth rate

of trend. For some intuition into how unit root tests will perform at distinguishing this model

from the I(1) null, consider the alternative representation of the Markov trend function, tτ :
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Here ty  is written as the sum of a deterministic trend, t*0µ , a stochastic trend, tRT , and a

stationary component, tc . The stochastic trend is introduced because the effects of the discrete

shocks from the switching trend, tS*)( 01 µµ − , are permanently reflected in the level of tRT .

This stochastic trend is different from an integrated process in the traditional sense in that it does

not necessarily change each period. It is similar to the integrated case in that first differencing ty

eliminates the stochastic trend, leaving only a Markov switching mean.

To assess the power of unit root tests against the process given in (2) we perform Monte

Carlo simulations for both standard and Perron-type unit root tests. We parameterize the

experiments based on the observation that the tests should do a poor job of identifying the

alternative given by (2) when the proportion of the variance of changes in ty  given by the

stochastic trend, tRT , is smaller rather than larger. The variance of innovations to tRT  is given

by )()( 22
01 pp −− µµ  where 

1100

00

2

1
)1( 

pp

p
SEp t

−−

−
=== . Lam (1990) finds that 37% of the

variance of growth rates in real U.S. GNP is due to tRT . We thus chose parameter values that

will yield this 37% proportion when 5.011 =p  and 95.000 =p , the transition probability

estimates found by Lam. These parameter values are 10 =µ , 5.11 −=µ , )4.0 ,0(~2
Nεσ , and

1)( =Lφ . For each unit root test 1000 Monte Carlo simulations were performed with two sample
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sizes, T = 200 and T = 500, and the initial values of tS  and ty  set equal to zero. To set 11p  and

00p  we appeal to an existing literature (Hamilton 1989, Lam 1990, Diebold and

Rudebusch 1996, Engel 1994) which finds for various monthly and quarterly series that one state

is highly persistent, generally having a transition probability above 0.9, while the other is

somewhat less persistent, although still usually having a transition probability of 0.5 or greater.

We thus consider the following values of 00p : 0.9, 0.95, 0.98 and of 11p : 0.5, 0.6, 0.7, 0.8, 0.9,

0.95, 0.98.

Augmented Dickey-Fuller Test.

We first consider the power of the Augmented Dickey Fuller, hereafter ADF, test (Dickey

and Fuller 1979, Said and Dickey 1984) against the alternative hypothesis given in (2). We

consider the ADF test based on the t-statistic associated with the null hypothesis 1=ρ  from the

test regression:

 t

k

j

jtjtt ytycy ηφβρ +∆+++= �
=

−−

1

1 (3)

with the lag length, k, chosen by the backward lag-length selection procedure given in Campbell

and Perron (1991) with a maximum lag length, k , set equal to the lower integer bound of 3/1T

as suggested by Said and Dickey (1984).

As would be expected from the existing literature, the ability of the ADF tests to distinguish

the regime-switching trend stationary alternative given in (2) is quite poor. Table 1 shows the

rejection probabilities for the 5% nominal size ADF test. For the T = 200 case the test never

rejects above 35%, only rejects above 20% for 6 of the 21 combinations of the transition

probabilities considered, and often rejects in the 5-10% range. The test tends to perform better

when one transition probability dominates the other, for example, for the values of the transition
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Table 1. Empirical Power of a 5% Augmented Dickey Fuller Test, True Process has Markov

Switching in Trend Growth Rate

T

200 500

Power Power

11p 00p = 0.9 00p = 0.95 00p = 0.98 11p 00p = 0.9 00p = 0.95 00p = 0.98

0.5 0.13 0.31 0.33 0.5 0.05 0.06 0.08

0.6 0.24 0.31 0.16 0.6 0.05 0.05 0.09

0.7 0.15 0.08 0.25 0.7 0.08 0.10 0.07

0.8 0.06 0.05 0.12 0.8 0.05 0.06 0.04

0.9 0.06 0.04 0.20 0.9 0.05 0.04 0.06

0.95 0.06 0.05 0.10 0.95 0.05 0.06 0.06

0.98 0.14 0.11 0.08 0.98 0.09 0.09 0.03

probabilities estimated by Lam (1990) for U.S. real GDP, 95.00 =p  and 5.011 =p , the test

rejects with a 31% frequency. This is because the variance of innovations to the stochastic trend,

tRT , is smaller the larger the difference between the transition probabilities, that is

)()( 22
01 pp −− µµ  is a decreasing function of 1100 pp − . Intuitively, as one state becomes

increasingly dominant, the process more closely resembles one with constant trend growth rate.

For the larger sample size the ADF test has even lower power, rejecting at 10% or less frequency

in all cases. This is not surprising as the larger sample size gives the ADF test more opportunity

to detect the stochastic trend, tRT .

Perron-Type Tests.

Since the influential work of Perron (1989) a large number of unit root tests that allow for

structural breaks in trend growth rate or level under the alternative have been developed. The

objective of this research program is to develop tests with higher power against broken-trend

stationary alternatives. These tests are robust to a fixed number of structural breaks, usually one.

However, there has been some argument in the literature that when there are multiple structural

breaks in trend growth rate it may be sufficient to simply account for the largest of these breaks,
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see for example Garcia and Perron (1996), pg. 113. We are thus interested in whether such tests

provide increased power against an alternative with a Markov-switching trend growth rate. Here

we consider two such tests that assume a single break in the growth rate of the trend function

occurring at an unknown date, one given in Perron (1994, 1997), hereafter the Perron test, and

the other given in Zivot and Andrews (1992), hereafter the ZA test. The Perron test assumes a

single break in trend growth rate under both the null and alternative hypothesis and specifies the

break as an additive outlier, meaning the full effects of the break are immediately reflected. The

test is based on the regressions in equations (3a) and (3b) of Perron (1997). The ZA test assumes

a single break in trend growth rate under only the alternative hypothesis and specifies the break

as an innovational outlier, meaning the full effects of the change are felt over time. The test is

based on the regression in equation 2’ in Zivot and Andrews (1992). For both tests the date of the

structural break was estimated as the date that provides the most evidence against the null

hypothesis, see Zivot and Andrews (1992) for details.

Tables 2-3 contain the rejection frequencies for 5% nominal size Perron and ZA tests.

Interestingly, the Perron test performs worse than the ADF test for many of the cases considered.

For example, when 200=T  the ADF test rejects more frequently for 17 of the 21 combinations

of transition probabilities. For the transition probabilities estimated by Lam (1990) for real GDP,

95.00 =p  and 5.011 =p , the Perron test rejects 16% of the time vs. 31% for the ADF test. The

ZA test performs somewhat better, rejecting more frequently than the ADF test for 18 of the 21

combinations of transition probabilities considered when 200=T . However, the difference is

not decisive: in 10 of these 18 cases the ZA test is within 15% of the ADF test. In addition, the

ZA test only rejects more than 40% of the time on four occasions and for over half the cases

rejects at a less than 25% frequency. For the Lam (1990) transition probability estimates for real
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GDP the ZA test rejects at a 19% frequency vs. 31% for the ADF test. When 500=T  the tests

have even lower power, usually rejecting at close to their nominal size.

Table 2. Empirical Power of a 5% Perron (1994, 1997) Test, True Process has Markov

Switching in Trend Growth Rate

T

200 500

Power Power

11p 00p = 0.9 00p = 0.95 00p = 0.98 11p 00p = 0.9 00p = 0.95 00p = 0.98

0.5 0.14 0.16 0.22 0.5 0.05 0.06 0.07

0.6 0.13 0.15 0.24 0.6 0.03 0.05 0.06

0.7 0.10 0.11 0.19 0.7 0.04 0.10 0.08

0.8 0.05 0.05 0.12 0.8 0.03 0.05 0.05

0.9 0.04 0.03 0.09 0.9 0.05 0.06 0.03

0.95 0.05 0.03 0.09 0.95 0.04 0.04 0.05

0.98 0.11 0.09 0.17 0.98 0.06 0.06 0.02

Table 3. Empirical Power of a 5% Zivot-Andrews (1992) Test, True Process has Markov

Switching in Trend Growth Rate

T

200 500

Power Power

11p 00p = 0.9 00p = 0.95 00p = 0.98 11p 00p = 0.9 00p = 0.95 00p = 0.98

0.5 0.24 0.19 0.73 0.5 0.07 0.10 0.13

0.6 0.14 0.43 0.43 0.6 0.05 0.07 0.10

0.7 0.40 0.25 0.35 0.7 0.01 0.06 0.10

0.8 0.10 0.36 0.35 0.8 0.10 0.10 0.14

0.9 0.16 0.09 0.20 0.9 0.05 0.07 0.10

0.95 0.12 0.09 0.18 0.95 0.04 0.07 0.10

0.98 0.24 0.28 0.33 0.98 0.12 0.14 0.10

1.2 Regime Switching in the Transitory Component

Models with two-state Markov switching in trend growth rate, such as that discussed in the

previous section, have been used extensively to model business cycle asymmetry. One reason for

its popularity is the ability of a regime switching trend growth rate to capture the empirical

observation that recessions are steeper and shorter than expansions. However, one implication of
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the two-state Markov-switching trend model is that recessions have permanent effects on the

level of output, that is the economy never recovers output lost during a recession. Many authors

have provided evidence that this implication is not consistent with the data, instead, following

steep, short recessions the economy seems to undergo a high-growth recovery phase to gain back

what was lost, see for example Friedman (1969, 1993), Wynne and Balke (1992, 1996), and

Sichel (1994). In other words, the business cycle is better characterized with three phases rather

than two. Recently, Kim and Nelson (1999) used Markov regime switching in the transitory

component of real GDP to capture this pattern of business cycle asymmetry. Here we consider a

trend stationary version of their model:
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where )(Lφ  has all roots outside the unit circle. Here, unlike the model in (1), the average

growth rate of the deterministic trend, µ , is constant. Instead, regime switching occurs in the

transitory component, tc . If 0<γ , when tS  = 1 the level of the series is driven down into a

steep recession. However, the recession is not permanent as past shocks from γ  disappear

through the autoregressive dynamics in the transitory component, causing a high growth

recovery phase once tS  returns to zero. In the words of Friedman(1969, 1993), the economy is

“plucked” downward during recession, bouncing back to trend following the recession.

The results of Kim and Nelson (1999) suggest that a model specifying recessions as

“plucking” episodes provides as good as or better description of U.S. real GDP than a model

with regime shifts in the trend component. However, given that the regime switching in (4)

works through the transitory component we would expect unit root tests to have much better
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power against this alternative than the model in Section 1.1. To investigate this we perform a

Monte Carlo experiment with the ADF test. We parameterize the simulation based on the

percentage of the variance of tc  coming from the “plucks” γ . Kim and Nelson (1999) find this

percentage to be approximately 80% for real GDP for estimated transition probabilities of

95.11 =p  and 70.00 =p . When 1)( =Lφ  this percentage is given by:
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       (5)

To meet the 80% metric when 95.11 =p  and 70.00 =p  we parameterize the simulation with

0.1−=γ  and )04. ,0(~ Ntε . We set 8.0=µ , the average growth rate of real GDP over the Kim

and Nelson sample. Again, we perform 1000 Monte Carlo trials for the same range of transition

probabilities as in Section 1.1.

Table 4 contains the rejection frequencies for the 5% ADF test. As expected, the ADF test

performs very well, rejecting at close to 100% for the most empirically relevant values of the

transition probabilities. For example, for the estimated transition probabilities found by Kim and

Nelson for real GDP, 95.11 =p  and 70.00 =p , the ADF test rejects at a 99% frequency when

200=T  and a 100% frequency when 500=T . The power remains above 50% in all but one of

the 21 combinations considered for 200=T  and in all cases for 500=T .

The differing performance of unit root tests for the model in (1) vs. the model in (4) is

important in answering the question of whether real GDP has a unit root. If we believe that

business cycle nonlinearities are shifts in trend as in Lam (1990) these shifts will have significant

deleterious effects on the power of unit root tests, including Perron-type tests. If however, these

nonlinearities are better characterized as Friedman’s “plucks” the power of unit root tests will be

unaffected. Instead, the only remaining sort of structural change relevant to unit root tests will be
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long run breaks, such as the much discussed productivity slowdown. In this case Perron-type

tests will still have an advantage over standard tests such as the ADF test. This points us to the

importance of determining the true nature of business cycle nonlinearities for deciding what

classes of unit root tests should be used in studies of real GDP.

Table 4. Empirical Power of a 5% Augmented Dickey Fuller Test, True Process has Markov

Switching in the Transitory Component

T

200 500

Power Power

11p 00p = 0.9 00p = 0.95 00p = 0.98 11p 00p = 0.9 00p = 0.95 00p = 0.98

0.5 1.00 1.00 1.00 0.5 1.00 1.00 1.00

0.6 1.00 1.00 0.99 0.6 1.00 1.00 1.00

0.7 1.00 0.99 0.99 0.7 1.00 1.00 1.00

0.8 0.99 0.98 0.97 0.8 1.00 1.00 1.00

0.9 0.95 0.87 0.79 0.9 1.00 1.00 0.99

0.95 0.88 0.70 0.53 0.95 1.00 0.99 0.94

0.98 0.81 0.52 0.30 0.98 1.00 0.94 0.62

1.3 Regime-Switching Autoregressive Coefficients

To this point we have investigated Markov switching taking the form of discrete disturbances

to the trend or transitory component of a time series. Another popular formulation is Markov

switching in the autoregressive parameters of a time series, an example of which is:
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In (6), ty  follows an AR(1) process in which the autoregressive parameter, the constant term,

and the variance of the error term all switch between two regimes. A popular version of (6) in the

empirical literature specifies ty  to be I(1) in one regime and I(0) in the other, for example 10 =ρ
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and 11 <ρ . Ang and Bekaert (1998) demonstrate that as long as the I(0) regime has positive

probabilities of occurring and persisting, in this case 0)1( 00 ≠− p  and 011 ≠p , ty  is covariance

stationary. This occasionally integrated model has been usefully employed to model interest

rates. For example, Ang and Bekaert (1998) point out that the U.S. Federal Reserve tends to

move short term interest rates in a very persistent fashion during low inflation periods. However,

during high inflation times Federal Reserve interest rate changes become less persistent and have

higher variance.

For our purposes, we are interested in the ability of unit root tests to distinguish the

occasionally integrated model from the I(1) null hypothesis. To investigate this issue we

performed Monte Carlo simulations with the ADF test when the generating process is (6). We

parameterize the Monte Carlo experiments to mimic the pattern of Federal Reserve interest rate

movements discussed above. Thus, when 0=tS  (low inflation times) ty  is a random walk with

no drift, that is 10 =ρ , 00 =µ , and ).25 ,0(~0| NStt =ε . When 1=tS  (high inflation times)

ty  is a stationary AR(1) with positive mean and )2.0 ,0(~1| NStt =ε . One would expect that

unit root tests would perform worse for more persistent values of the autoregressive parameter

when 1=tS . Thus, we consider three pairs of 11, ρµ : (1.0, 0.8); (0.5, 0.9); (0.25, 0.95). In these

pairs 1µ  is altered to maintain a constant mean of 5 for ty  in the stationary state.

Tables 5-7 present the Monte Carlo simulations for the three pairings of 11, ρµ  and the

sample sizes 200=T and 500=T . As would be expected, the tests perform better as 1ρ

decreases, as 11p  increases relative to 00p  (the less time that is spent in the I(1) state), and the

larger the sample size (the more data available for the test to detect the I(0) state). In general

however the tests perform very poorly for empirically plausible parameterizations. Of the 63
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power statistics reported for the 200=T  cases the test has power greater than 50% on only 3

occasions (all for the smallest value of 1ρ ), and greater than 20% on only 17 occasions (10 of

these for the smallest value of 1ρ ). As the sample size increases the performance of the test is

fairly good for the lowest value of 1ρ  considered but is still poor for larger values of 1ρ . For

example, Ang and Bekaert (1998) show that the regime switches in U.S. interest rates roughly

correspond to business cycle frequencies. Depending on the frequency of the data this

corresponds to values of 00p  between 0.9 and 0.95 and values of 11p  between 0.5 and 0.9. For

9.1 =ρ  and 500=T  the ADF test has power greater than 40% over this range of transition

probabilities on only one occasion.

Table 5. Empirical Power of a 5% Augmented Dickey Fuller Test, True Process has Markov

Switching in the Autoregressive Parameters and 8.0,0.1 11 == ρµ

T

200 500

Power Power

11p 00p = 0.9 00p = 0.95 00p = 0.98 11p 00p = 0.9 00p = 0.95 00p = 0.98

0.5 0.12 0.09 0.08 0.5 0.43 0.14 0.08

0.6 0.17 0.09 0.09 0.6 0.50 0.19 0.09

0.7 0.20 0.12 0.09 0.7 0.63 0.26 0.10

0.8 0.28 0.17 0.12 0.8 0.74 0.35 0.13

0.9 0.48 0.30 0.19 0.9 0.93 0.64 0.23

0.95 0.64 0.47 0.27 0.95 0.99 0.83 0.41

0.98 0.81 0.66 0.47 0.98 1.00 0.96 0.73
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Table 6. Empirical Power of a 5% Augmented Dickey Fuller Test, True Process has Markov

Switching in the Autoregressive Parameters and 9.0,5.0 11 == ρµ

T

200 500

Power Power

11p 00p = 0.9 00p = 0.95 00p = 0.98 11p 00p = 0.9 00p = 0.95 00p = 0.98

0.5 0.08 0.07 0.07 0.5 0.15 0.09 0.05

0.6 0.10 0.10 0.07 0.6 0.19 0.09 0.07

0.7 0.11 0.10 0.10 0.7 0.27 0.13 0.09

0.8 0.15 0.12 0.09 0.8 0.39 0.17 0.10

0.9 0.22 0.17 0.13 0.9 0.64 0.35 0.16

0.95 0.32 0.27 0.21 0.95 0.86 0.61 0.32

0.98 0.42 0.37 0.29 0.98 0.95 0.85 0.59

Table 7. Empirical Power of a 5% Augmented Dickey Fuller Test, True Process has Markov

Switching in the Autoregressive Parameters and 95.0,25.0 11 == ρµ

T

200 500

Power Power

11p 00p = 0.9 00p = 0.95 00p = 0.98 11p 00p = 0.9 00p = 0.95 00p = 0.98

0.5 0.07 0.06 0.08 0.5 0.10 0.08 0.06

0.6 0.09 0.08 0.09 0.6 0.09 0.07 0.05

0.7 0.09 0.08 0.09 0.7 0.12 0.08 0.06

0.8 0.09 0.11 0.11 0.8 0.15 0.11 0.09

0.9 0.11 0.13 0.10 0.9 0.29 0.15 0.13

0.95 0.17 0.14 0.15 0.95 0.44 0.27 0.19

0.98 0.17 0.17 0.17 0.98 0.59 0.45 0.34

2. REGIME-SWITCHING I(1) PROCESSES AND THE SIZE OF UNIT ROOT TESTS

2.1 Regime Switching in the Trend Component and Variance

In Section 1.1 we were interested in the ability of unit root tests to distinguish a process that

was I(0) with a Markov-switching trend growth rate from an I(1) process. Here we will

investigate what deleterious size effects a Markov-switching trend growth rate and variance in an

otherwise I(1) process might have on unit root tests. Consider the following model motivated by

Hamilton (1989):
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Again, tS  is first order Markov switching and tτ  is a deterministic trend component with a

switching growth rate. As in Hamilton (1989) we specify )(Lφ  to have one root on the unit circle

and all other roots outside the unit circle, so that shocks to ty  in between the Markov-switching

trend breaks have permanent effects on the level of the series. We also allow the variance of the

error term to undergo regime switching.

To simplify matters we set )1()( LL −=φ . The model in (7) can then be written with a

constant growth rate and serially correlated, conditionally heteroskedastic errors:

tttt

tt

SSe

ey

εµµµµ

µ
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+=∆

)1)(()( 01

        (8)

To make 0)( =teE  choose 001 )( µµµµ +−= p . Substituting in the chosen expression for µ

we arrive at the autocovariance function:

))(()(),( 2
01 pSpSEeeCov kttktt −−−= −− µµ

),( )(                                                              2
01 ktt SSCov −−= µµ         (9)

Also, conditional on tS , 
t

e  has a time varying variance due to the heteroskedasticiy of tε :

    1 ,0,)|( 2 === jjSeVar jtt εσ      (10)

A result from the theory of Markov processes tells us that )1|1( == −ktt SSP  and

)0|0( == −ktt SSP  converge to the unconditional probabilities p  and (1- p ) at a geometric rate.

Then, noting that ))1|1(*()( 2
pSSPpSSCov kttktt −=== −−  we have =− ),( ktt eeCov
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0))1|1(*()( 22
01 →−==− − pSSPp kttµµ geometrically. Thus, the model in (7) can be written

with constant trend growth rate and errors exhibiting serial correlation that dies off

geometrically. It should be noted that this result is entirely due to the modeling of breaks in the

trend function as endogenous, probabilistic events. It does not hold true in models assuming a

fixed number of structural breaks in trend growth rate such as the cases considered by

Perron (1989) and Zivot and Andrews (1992) among others.

Several previous studies, for example Schwert (1989), investigate the properties of unit root

tests under various forms of ARMA innovations. Therefore, we will find an ARMA process a

useful alternative representation of 
t

e . Consider the following stationary AR(1) representation of

t
S  given by Hamilton (1989):

         
1100
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     (11)

where, conditional on 1
1

=
−t

S , )1( 11pt −=ω  with probability 11p  and 11pt −=ω  with

probability 111 p−  and conditional on 01 =
−t

S , )1( 00pt −−=ω  with probability 00p  and

00pt =ω  with probability 001 p− . Hamilton (1989) shows that the error term, tω , has

0)( =tE ω , )1)(1()1()( 00001111
22

ppppppE t −−+−== ωσω , and is uncorrelated in that

0)|( =− jttE ωω  for all four possible values of jt−ω  and ,.....2,1=j . Using (11) note that:
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The term on the left hand side of (12) is an AR(1) while the term on the right hand side has the

autocovariance function of an MA(1) in that it is zero after the first lag. Thus, 
t

e  follows an

ARMA(1,1) process.
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To determine the effects of the regime switching in trend growth rate and variance on unit

root tests we perform Monte Carlo experiments for the three tests discussed in Section 1: the

ADF test, Perron test, and ZA test. We consider two cases, one in which there is only regime

switching in trend growth rate and one in which there is only switching in variance. To

parameterize the trend switching case we set the parameters to yield a specified amount of serial

correlation as measured by the first order autocorrelation of te :
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where the denominator is the unconditional variance of te . We set 10 =µ , 51 =µ ,

),0(~ 2
tt N εσε , and 110 ==

εε
σσ  to yield a value of (13) equal to 0.50 for 9.011 =p  and

7.000 =p , the transition probability estimates for U.S. real GNP found by Hamilton (1989).

This level of autocorrelation is similar to that found in the existing literature. For example, the

value of (13) for U.S. real GNP reported by Hamilton is 0.38 while Engel’s (1994) parameter

estimates for the Japanese / French exchange rate suggest a value of (13) equal to 0.50.

For the variance switching case we set ),0(~ 2
tt N εσε , 

1

3

0

1
=

ε

ε

σ

σ
, and 0.110 == µµ . This

level of heteroskedasticity is quite reasonable for asset prices, for example Turner, Startz, and

Nelson (1989) report 6.2
0

1
=

ε

ε

σ

σ
 for stock returns while Engel (1994) reports much higher ratios

for several U.S. exchange rates. However, this level of heteroskedasticity is overstated for series

such as real GDP. Thus, our results for the switching variance case have more relevance for

financial time series than for macroeconomic quantities. Again, we consider the same range of
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transition probabilities and sample sizes as in Section 1. Each Monte Carlo experiment is

comprised of 1000 trials with initial values of tS  and ty  set equal to zero.

We begin by considering the effects of the Markov-switching trend growth rate in (7).

Because this regime switching simply introduces serial correlation into an otherwise I(1) process

we can appeal to the large literature evaluating the effects of serial correlation on unit root tests.

Schwert (1989) demonstrates the ADF test performs well in the presence of ARMA errors such

as those in (12). However, Leybourne, Mills, and Newbold (1998) show that the ADF test tends

to overreject the null hypothesis when there is a single break in trend growth rate that occurs

early in the sample. Thus, we expect the ADF test to overreject for parameterizations of (7) that

yield few breaks, with one occurring early in the sample. The question of interest is for how

broad a range of the Markov-switching parameterizations this result holds. Table 8 presents the

rejection frequencies for the 5% ADF test. Note that only for 200=T  and 98.011 =p  are the

size distortions pointed out by Leybourne, Mills, and Newbold present. For most

parameterizations the ADF test has size close to its nominal size and in general is slightly

oversized. This is likely due to the Campbell-Perron lag selection procedure which has been

documented by Hall (1994) to cause slight overrejection.

Table 8. Empirical Size of a 5% Augmented Dickey Fuller Test, True Process has Markov

Switching in Trend Growth Rate

T

200 500

Size Size

11p 00p = 0.9 00p = 0.95 00p = 0.98 11p 00p = 0.9 00p = 0.95 00p = 0.98

0.5 0.05 0.07 0.05 0.5 0.07 0.06 0.05

0.6 0.07 0.07 0.07 0.6 0.05 0.05 0.05

0.7 0.05 0.07 0.06 0.7 0.05 0.05 0.05

0.8 0.06 0.06 0.07 0.8 0.04 0.06 0.05

0.9 0.06 0.03 0.06 0.9 0.05 0.04 0.05

0.95 0.06 0.05 0.06 0.95 0.05 0.05 0.04

0.98 0.15 0.10 0.06 0.98 0.07 0.07 0.03
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Next we consider the Perron and ZA test that allow for a single break in trend growth rate

under the alternative. Table 9 contains the rejection frequencies for the 5% Perron test. The

Perron test performs similarly to the ADF test for most parameterizations, which is not surprising

given that it captures serial correlation in the same way as the ADF test. Notably, the Perron test

performs better than the ADF test when 98.011 =p . This is most likely because the Perron test is

robust to a single break in trend growth rate under the null hypothesis as well as the alternative,

making the Leybourne, Mills and Newbold (1998) critique not as relevant. Table 10

demonstrates that the ZA test can be significantly oversized when there are only a small number

of breaks, that is for large values of 00p  or 11p . This is because the distribution of the ZA test is

derived assuming a null with no structural change, the presence of a small number of structural

breaks under the null hypothesis will violate this null hypothesis and lead to overrejections. This

issue is not as serious for the larger sample size, 500=T . Both the Perron and ZA test perform

similarly to the ADF tests for this larger sample size.

Table 9. Empirical Size of a 5% Perron (1994, 1997) Test, True Process has Markov Switching

in Trend Growth Rate

T

200 500

Size Size

11p 00p = 0.9 00p = 0.95 00p = 0.98 11p 00p = 0.9 00p = 0.95 00p = 0.98

0.5 0.07 0.05 0.06 0.5 0.05 0.03 0.08

0.6 0.06 0.04 0.06 0.6 0.04 0.04 0.04

0.7 0.05 0.05 0.06 0.7 0.05 0.06 0.04

0.8 0.05 0.06 0.05 0.8 0.04 0.06 0.03

0.9 0.05 0.04 0.06 0.9 0.05 0.05 0.03

0.95 0.05 0.03 0.05 0.95 0.03 0.05 0.02

0.98 0.09 0.05 0.04 0.98 0.05 0.05 0.02
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Table 10. Empirical Size of a 5% Zivot-Andrews (1992) Test, True Process has Markov

Switching in Trend Growth Rate

T

200 500

Size Size

11p 00p = 0.9 00p = 0.95 00p = 0.98 11p 00p = 0.9 00p = 0.95 00p = 0.98

0.5 0.09 0.10 0.09 0.5 0.07 0.04 0.05

0.6 0.08 0.09 0.10 0.6 0.07 0.06 0.07

0.7 0.09 0.10 0.13 0.7 0.06 0.09 0.07

0.8 0.09 0.09 0.13 0.8 0.05 0.08 0.09

0.9 0.08 0.09 0.15 0.9 0.11 0.08 0.09

0.95 0.11 0.10 0.19 0.95 0.05 0.07 0.08

0.98 0.24 0.23 0.29 0.98 0.10 0.10 0.08

We now move to the simulations investigating Markov switching in variance. Many authors

have investigated the effects of various forms of heteroskedasticity on unit root tests, including

Pantula (1988), Kim and Schmidt (1993), and Seo (1999). Provided that the heteroskedasticity

meets certain conditions, given explicitly by Hamori and Tokihisa (1997), heteroskedasticity

does not create size distortions for standard unit root tests. In Piger (2000) it is shown that

Markov-switching heteroskedasticity meets these conditions, suggesting that standard unit root

tests should perform well. However, we are still interested in investigating two scenarios. First,

Hamori and Tokihisa (1997) have shown that a single break in variance causes Dickey-Fuller

type tests to be oversized. Thus, we might expect that certain parameterizations of Markov

switching in variance that yield a small number of breaks will cause size distortions in the ADF

test. Table 11 demonstrates that this is not the case. The ADF test is reasonably sized for even

large values of 00p  and 11p , suggesting the result of Hamori and Tokihisa fades quickly when

more than one break is allowed.
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Table 11. Empirical Size of a 5% Augmented Dickey Fuller Test, True Process has Markov

Switching in Variance

T

200 500

Size Size

11p 00p = 0.9 00p = 0.95 00p = 0.98 11p 00p = 0.9 00p = 0.95 00p = 0.98

0.5 0.07 0.07 0.05 0.5 0.06 0.05 0.05

0.6 0.08 0.08 0.06 0.6 0.07 0.06 0.04

0.7 0.06 0.07 0.07 0.7 0.05 0.05 0.06

0.8 0.07 0.07 0.08 0.8 0.06 0.06 0.07

0.9 0.07 0.09 0.08 0.9 0.05 0.06 0.05

0.95 0.06 0.08 0.08 0.95 0.06 0.04 0.07

0.98 0.05 0.06 0.08 0.98 0.05 0.06 0.06

Secondly, Hecq (1995) points out for the case of IGARCH errors that periods of high and

low variance in an integrated process can lead to the illusion of breaks in the level of trend. Tests

that are robust to a structural break in level under the alternative can spuriously detect such

breaks and overreject as a result. We thus might expect versions of the Perron and ZA test that

allow for a break in the level of trend to be oversized in the presence of Markov-switching

heteroskedasticity. To investigate this issue we consider the performance of the Perron test

allowing for a single break in the level of trend under both the null and the alternative, based on

equations (14) and (17) in Perron (1994), and the ZA test allowing for a single break in the level

of trend under the alternative, given by equation 1’ in Zivot and Andrews (1992). As Tables 12-

13 make clear, the size distortions can be significant for certain parameterizations of 00p  and

11p . For example, for 200=T the 5% nominal size Perron test rejects at a greater than 10%

frequency in all but one of the 21 combinations of transition probabilities considered and greater

than 15% for 8 of the 21 combinations. The ZA test rejects at a greater than 10% frequency in all

but one case and greater than 15% in more than half of the cases when .200=T  Both tests

perform somewhat better when 500=T  but are still oversized.
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Table 12. Empirical Size of a 5% Perron (1994, 1997) Test, True Process has Markov

Switching in Variance

T

200 500

Size Size

11p 00p = 0.9 00p = 0.95 00p = 0.98 11p 00p = 0.9 00p = 0.95 00p = 0.98

0.5 0.12 0.13 0.12 0.5 0.11 0.06 0.11

0.6 0.14 0.13 0.14 0.6 0.10 0.09 0.08

0.7 0.12 0.17 0.13 0.7 0.11 0.15 0.11

0.8 0.13 0.17 0.19 0.8 0.11 0.16 0.14

0.9 0.12 0.17 0.21 0.9 0.15 0.10 0.16

0.95 0.10 0.16 0.20 0.95 0.06 0.14 0.18

0.98 0.09 0.12 0.16 0.98 0.06 0.06 0.17

Table 13. Empirical Size of a 5% Zivot-Andrews (1992) Test, True Process has Markov

Switching in Variance

T

200 500

Size Size

11p 00p = 0.9 00p = 0.95 00p = 0.98 11p 00p = 0.9 00p = 0.95 00p = 0.98

0.5 0.15 0.14 0.14 0.5 0.07 0.11 0.09

0.6 0.15 0.17 0.15 0.6 0.11 0.10 0.11

0.7 0.16 0.19 0.16 0.7 0.08 0.16 0.14

0.8 0.15 0.22 0.21 0.8 0.10 0.20 0.15

0.9 0.14 0.21 0.24 0.9 0.13 0.16 0.20

0.95 0.10 0.17 0.24 0.95 0.10 0.13 0.16

0.98 0.08 0.12 0.19 0.98 0.04 0.11 0.16

2.2 Regime Switching in the Transitory Component

In Section 1.2 we discussed how different Markov-switching models of business cycle

asymmetry can have very different implications for the effects of asymmetry on the power of

unit root tests. Here we examine the difference this modeling choice has for the size of unit root

tests. Consider the following I(1) version of the model presented in Section 1.2:
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where )(Lφ  has all roots outside the unit circle. Here ty  is the sum of a deterministic trend with

constant drift, a random walk component, and a stationary autoregressive component that,

assuming 0<γ , is “plucked” downward whenever 1=tS . To see the effects the process in (14)

might have on the size of unit root tests rewrite (14) in first differences assuming 1)( =Lφ :

  

tttt

tt
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ey

∆+∆+=

+=∆

**

*

γε

µ
     (15)

The process can thus be written in first differences with constant drift and an error term that is

augmented by a Markov-switching component. The Markov switching introduces additional

serial correlation into the process, namely the first difference of tS . One interesting note is the

similarity of this case to the additive outlier literature discussed by Franses and Haldrup (1994)

among others. The parameter γ  would correspond to an additive outlier in the case where tS

was serially uncorrelated as opposed to being a Markov-switching process. As Madalla and

Yin (1997) and Vogelsang (1999) point out, the first difference of tS  in (15) would then

introduce an MA(1) component into the first difference of ty . For smaller values of γ  the

additional serial correlation introduced in both the Markov switching and additive outlier cases is

captured by tests such as the ADF test and does not cause overrejections. However, as the size of

γ  increases, the contribution of the transitory component to the variance of ty∆  increases

relative to the contribution of the stochastic trend component. This can eventually lead to

spurious rejections from unit root tests if the variance of the transitory component begins to

dominate. The question is whether parameterizations of (14) corresponding to U.S. business

cycles generate such spurious rejections.
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Table 14. Empirical Size of a 5% Augmented Dickey Fuller Test, True Process has Markov

Switching in the Transitory Component

T

200 500

Size Size

11p 00p = 0.9 00p = 0.95 00p = 0.98 11p 00p = 0.9 00p = 0.95 00p = 0.98

0.5 0.36 0.28 0.16 0.5 0.22 0.19 0.12

0.6 0.40 0.26 0.19 0.6 0.29 0.24 0.15

0.7 0.42 0.35 0.23 0.7 0.37 0.29 0.19

0.8 0.49 0.34 0.24 0.8 0.47 0.37 0.24

0.9 0.46 0.34 0.24 0.9 0.51 0.46 0.28

0.95 0.38 0.27 0.15 0.95 0.48 0.44 0.28

0.98 0.24 0.18 0.09 0.98 0.34 0.27 0.19

To investigate this issue we performed Monte Carlo experiments to investigate the

performance of the ADF tests when the generating process is (14). We parameterize the

simulation using parameter estimates from Kim and Nelson (1999) for U.S. real GDP. That is,

we set 8.=µ , )4.0 ,0(~ Nvt , 1.1−=γ , )04.0 ,0(~ Ntε , and the lag order of )(Lφ  set equal to

2 with 26.11 =φ  and 46.02 −=φ . Table 14 demonstrates that this level of “plucking” is indeed

large enough to cause spurious rejections in the ADF test. These rejections are fairly severe, the

5% ADF test rejects at a more than 10% frequency for all but one of the combinations of the

transition probabilities considered in Table 14. For 200=T  the rejections climb above 30% for 9

of the 21 cases while for 500=T  rejections are larger than 30% on 8 occasions. Again, this

points out that whether nonlinearities in the U.S. business cycle take the form of shifts in trend or

“plucks” in the transitory component can have large implications for the performance of unit root

tests applied to U.S. output series.
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3. CONCLUSION

We have investigated the performance of unit root tests when the true process undergoes

various types of Markov-switching regime change. We consider both processes that are I(0) and

I(1) in the periods between the regime switching. Our main findings are:

1) In line with previous literature, the Augmented Dickey-Fuller test does a poor job of

distinguishing an I(0) process with Markov-switching breaks in trend growth rate from an

I(1) process. Interestingly however, tests designed to be robust to a single structural break

in trend growth rate under the alternative also have very low power in this case.

2) When the true process is I(1) and undergoes Markov switching in both trend growth rate

and variance ADF tests have approximately the correct size for almost all combinations

of transition probabilities. This demonstrates that studies documenting size distortions

from a single break in trend growth and variance do not generalize to multiple,

probabilistic breaks. Also, tests robust to a single break in level overreject the null

hypothesis when there is Markov switching in variance.

3) When modeling business cycle asymmetry, an alternative to Markov switching in trend

growth rate as in Lam (1990) is to allow for Markov-switching “plucks” in the transitory

component of GDP as in Kim and Nelson (1999). The ADF test has good power when

these “plucks” occur under the alternative hypothesis. However, the ADF test can be

oversized when the regime switching occurs under the null, mainly because the “plucks”

increase the contribution of the transitory component to the series. This demonstrates that

the true nature of business cycle asymmetry has serious implications for the performance

of unit root tests on output series.
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