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Abstract

The technology growth trends that underlie recent productivity patterns

are investigated in a framework that incorporates investment-specific

technological progress.  Structural-break tests and regime-shifting models reveal

the presence of a downward shift in TFP growth in the late 1960s and an upward

shift in investment-specific technology growth in the mid-1980s.  In both cases,

these breaks precede the generally-recognized dates of labor productivity growth

shifts.  Simulations of technology growth shocks in a basic neoclassical model

show that induced patterns of capital accumulation are generally consistent with

the observed lags between technological advances and changes in productivity

growth.

* The views expressed in this paper are those of the author and do not necessarily reflect official positions of the

Federal Reserve Bank of St. Louis, the Federal Reserve System or the Board of Governors.



1For example, Gordon (2000), Roberts (2001), and Jorgenson, Ho and Stiroh (2002) examine the

transitory and permanent components of productivity growth, with differing conclusions about

their relative contributions.  However, these and other studies date the apparent change in

productivity growth at 1995 or 1996.  Hansen (2001) finds a 1994 break in productivity growth.

2Solow (1987).

3The dating of the productivity growth slowdown in 1973 has become the received wisdom, from

at least as far back as Dennison (1985).
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The increase in productivity growth since the mid-1990s has proven to be

persistent and durable.  Having continued through a recession and into the current

expansion, the acceleration of the late 1990s provides a counterpoint to the productivity

slowdown of the early 1970s.   Because the role of new technologies is commonly seen

as central to the emergence of increased productivity growth, research on this growth

resurgence has focused on advances in information-technology (IT), which is often

characterized as being “capital-embedded,” or “investment-specific” in its application.

A consensus has emerged that dates the increase in productivity growth in the

mid-1990s.1  However, the rapid pace of innovation in IT had been recognized long

before that time. Indeed, the famous “Solow productivity paradox,” that we “see the

computer age everywhere but in the productivity statistics” dates to nearly a decade

earlier.2  

In this paper, I use a dynamic neoclassical growth framework to examine two

prominent, specific changes in technology growth trends of the past half-century, along

with subsequent patterns of capital accumulation and productivity growth.  Applying the

approach of Greenwood, Hercowitz and Krusell (2000) to measure Hicks-neutral and

investment-specific technology as two independent sources of exogenous growth, the

empirical evidence presented here suggests a negative structural break in neutral

technology growth in the late 1960s and a partially offsetting positive break in

investment-specific technology growth in the mid-1980s.  In both cases, the estimated

breakpoints precede the onset of shifts in labor productivity growth, as they have come to

be conventionally recognized.3

A number of explanations for a delayed impact of technological innovation on

productivity have been proposed in the literature.  For example, some models incorporate

lags associated with the adaptation and diffusion of technical knowledge (e.g. Hornstein

and Krusell, 1996;  Jovanovic and MacDonald, 1994; Greenwood and Yorukoglu, 1997;

Andolfatto and MacDonald, 1998; Yorukoglu, 1998; and Hornstein, 1999).  Others



4In a previous paper on the subject of technology growth and transition dynamics (Pakko, 2002b),

I examined a model that is subject to transitory shocks to both the level of technology and to the

growth rate of technology—showing that the latter contribute significantly to the overall ability

of the model to explain the pattern of observed economic fluctuations.
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consider human capital accumulation as a specific source of the lag (e.g. Collard, 1999;

Perli and Sakellaris, 1998; and Ozlu, 1996).   Basu, Fernald and Shapiro (2001) propose

several sources of friction associated with adjustment costs and factor utilization rates.  

Models of “general purpose technologies,” as described in Helpman (1998), and other

R&D and Schumpeterian growth models like those of Aghion and Howitt (1992) also

suggest delays in the productivity-enhancing effects of technological innovations. 

Historical analyses such as those of  David (1990) and Mazzucato (2002) have been cited

as evidence of some of these effects. 

In this paper,  I examine a more fundamental explanation involving the capital-

deepening component of the standard neoclassical growth paradigm. Using dynamic

simulations of a model that accommodates stochastic trends in technological growth

rates, I demonstrate how shifts in technology growth engender capital-stock  transition

dynamics that tend to delay the response of productivity growth in a way that is generally

consistent with patterns seen in the data.4  

In particular, the model simulations are consistent with the evidence that the

slowdown in neutral technology growth in the late 1960s was followed by a period of

increased capital accumulation, delaying the evident onset of the productivity growth

slowdown until the early 1970s; and that the acceleration of investment-specific

technological progress in the 1980s was followed by a period of slow capital growth,

suppressing labor productivity growth until the 1990s.  The ability of this basic model to

generally match these features of  the data suggests this endogenous capital-deepening

channel as a potentially important factor in accounting for productivity growth patterns,

in conjunction with the adaptation and diffusion lags that have been proposed in the

literature.

1.  A Simple Illustration

Before turning to an analysis of the data and the full articulation of the model, a

simple example can be used to illustrate growth-accounting implications of the capital

transition dynamics considered in this paper.  Consider a simple Cobb-Douglas

production function with fixed labor supply and labor augmenting technical progress:

.

Along a steady state growth path, standard restrictions require the growth of output and

capital will be equal to the exogenous growth rate of technology: γ
Y
 = γ

K
 =γ

X
 , where γ is



5As the coefficient of relative risk aversion approaches zero, the initial decline in capital growth

becomes smaller and the transition to the new steady-state growth path takes place more quickly. 

In the limit, with risk-neutral households, actual growth paths follow the technological potential

rates precisely.  The transition paths in Figure 1 are generated by a model simulation using

logarithmic preferences (σ =1).
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used to denote (gross) growth rates. In the absence of investment-specific technology

growth, consumption and investment grow at this common trend rate as well. 

As a growth-accounting exercise, it is common to decompose labor productivity

growth into components measuring TFP growth and capital-deepening:

where TFP growth, ∆ln(Z
t
)= (1-α)∆ln(X

t
), is calculated as a residual.  These two

components are often treated as being orthogonal, with the capital-deepening component

considered as a largely exogenous (or irrelevant) factor.

Now suppose that the steady-state growth rate of technological progress were to

increase from γ
X
 to γ

X
=.  The implied path of potential labor productivity growth and its

capital deepening component are illustrated by the solid lines in Figure 1.  

In a setting where risk-averse households control the technology, making

intertemporal optimization decisions, the increase in the growth rate of technological

progress will be associated with an increase in equilibrium real rates of return: Using a

standard isoelastic preference-specification, the long-run real interest rate depends on the

consumption growth rate, the coefficient of relative risk aversion, and the household

discount factor, as given by the steady-state Euler equation: R = γ
c

σ
/β.

At the higher rate of return implied by the increase in technology growth, the

optimal marginal product of capital rises, requiring the capital/labor ratio to fall. But the

consumption-smoothing behavior of households implies that capital growth will adjust

only incrementally to this new steady state path. Moreover, a wealth effect associated

with the realization of a higher steady-state growth rate engenders an immediate increase

in consumption, suppressing investment and capital accumulation so that capital growth

initially falls below its initial steady-state rate.5  Along the transition path, shown by the

dashed lines in Figure 1, the capital-deepening component suppresses overall labor

productivity growth, so that it adjusts to its new steady-state growth path only gradually

over time.

[Figure 1]



6See, for example, Oliner and Sichel (1994, 2000, 2002); Jorgenson and Stiroh (1999); Jorgenson

(2001); Stiroh (2002); and Jorgenson, Ho and Stiroh (2000,2002). 

7As long as the production function is modeled as Cobb-Douglas, the specification in (2) is

equivalent to the labor-augmenting form of technological progress discussed earlier:

Yt=F[Kt,(XtNt)].

8Hercowitz (1998) relates this representation of investment-specific technological change to the

“embodiment controversy”of Solow (1960) and Jorgenson (1966).

9For a more general discussion of the distinctions between these two sources of productivity

growth, see Pakko (2002a).
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2.  Neutral and Investment-Specific Technology Growth

The increase in productivity growth observed in the mid-1990s is commonly

attributed to  advances in information-technology (IT).  Consequently, research on the

topic has been particularly focused measuring the role of technological progress in these

sectors.6  An important feature of IT advances is that their effects are widely viewed as

being embodied in the capital stock.  Higher productivity arises from these advances not

simply because factors are utilized more efficiently, but because new forms of higher-

quality capital have become available. 

2.1  Theoretical Framework

One framework that represents this notion of embodiment is the investment-

specific technology model proposed by Greenwood, Hercowitz and Krusell (1997,2000).  

The model includes the standard TFP form of technology:

where growth in Zt, is associated with balanced, or Hicks-neutral technological progress.7

Investment specific technological progress is represented in the capital

accumulation equation:

Growth in the investment-specific technology index, Qt , is associated with  progress that

is manifested through the accumulation of more efficient or higher quality capital goods.8 

Output and productivity growth are affected indirectly as increases in Q raise the

effective capital stock that enters into the production function.9



10Components are aggregated using chain-weighting.
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The long-run growth rates of output and productivity depend on both technology

variables, Zt and Qt,   In conjunction with a budget constraint, we can derive the usual

steady-state restrictions that output, consumption and investment per capita will grow at a

common rate: γY = γC = γI.  However, in the presence of investment-specific technological

change the growth rate of the capital stock also reflects improvements in the productive

efficiency of capital goods:

Working through the capital deepening channel, investment specific technology

growth provides an independent source of growth for output and productivity. 

Specifically, the production technology determines the relationship between output

growth and the underlying technology growth rates as:

A shift in either the neutral or investment-specific technology growth rates gives rise to a

change in the potential growth rate of output and productivity.

2.2  Measuring Investment Specific Technology

As emphasized by Greenwood, Hercowitz and Krusell (1997), growth accounting

in the presence of investment-specific technological progress requires some modification

of the data from the national income and product accounts.  

The model is denominated in consumption-units, with Qt representing the relative

price of effective investment.  Proper accounting for neutral and investment specific

technology requires that the data reflect the same structure.  Hence, real output and

investment should be deflated from nominal quantities by using a consumption price

index.  Following the practice of previous analyses, the measure of consumption used

here consists of nondurables plus services (less housing services).10   Output is

represented by nominal gross domestic business product divided by the consumption

price deflator.  Output per hour is then calculated as the ratio of this measure of

production to total business sector hours from the BLS productivity accounts.

The measurement of quality change in the national accounts is an important

consideration for constructing empirical counterparts to the model’s variables.  In order

to provide an accounting that is complete as possible, previous studies have used

Gordon’s (1990) estimates of quality-change that is not reflected in the official data.

The bottom line of Gordon’s study was that the official NIPA data (as constructed

at the time) understated the true growth rate of spending for producers’ durable

equipment by nearly 3 percentage points per year over his post-war sample period.  



11For example, Greenwood, Hercowitz, and Krusell extended the Gordon data through 1990 by

adding 1.5 percent to the growth rates of real investment spending for all categories except

computers.  Hornstein (1999) invoked a similar procedure to extend the estimate through 1997.

12Data are extrapolated using only the last ten years of the sample period in recognition Gordon’s

observation that the magnitude unmeasured quality change was generally much smaller in the

latter part of his sample period, “consistent with the straightforward hypothesis that the PPI does

a better job of correcting for quality change now than was true thirty-five or forty years ago.” 

(Gordon, 1990, p. 538).

13The data set was compiled prior to the BEA’s December 2003 revision of the data for fixed-

assets.
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Because Gordon’s data set extends only through 1983, previous estimates of investment-

specific technology growth have been based on extrapolation of Gordon’s aggregate

data.11 

But as BEA definitions and methodologies are updated and as relative shares of

the components of equipment investment change over time, simple extrapolation of

Gordon’s aggregate data becomes less satisfactory.  Ideally, one would like to have

extended data series at the disaggregated level of Gordon’s original study.  A less

ambitious alternative is to extrapolate the drift ratios for each of Gordon’s 22 major

investment categories independently—accounting for changes in BEA definitions and

methodology—then aggregate the extrapolated data to calculate a new, extended series.

Such a  procedure is implemented here, using estimates based on a linear

extrapolation of Gordon’s drift ratios for the period 1973-83.12   The extrapolated drift

ratios were applied to the more recent NIPA  price data to create extended quality-

adjusted series for the individual categories of investment goods.  The data for individual

categories were then chain-weighted to yield an aggregate quality-adjusted measure of

fixed investment in equipment and software.

Special attention was paid to changes in BEA definitions and methodology.  In

particular, adjustments were made to account for methodological changes that have

improved the measurement of quality change, obviating the use of Gordon’s adjustment

factors.  One important innovation made in 1996 was the inclusion of software as an

investment component.  Gordon’s data set did not include software, so the official BEA

measure for this component is used, assuming that quality-change is properly measured. 

Similarly, the BEA has devoted considerable effort to accurately measuring quality

change for computers and peripheral equipment; hence, we assume that the bias found by

Gordon in the vintage data has been eliminated in contemporary time series estimates for

that component.  Extrapolations of the data for communications equipment and autos

were also treated with special attention to take account of updated procedures adopted by

the BEA for measuring quality change in those categories. These and other details of the

data construction are documented in a Data Appendix.13



14 The BEA constructs measures of net stocks for individual components, then uses chain-

weighted aggregation to build aggregates.  The use of annual depreciation factors provides an

approximate adjustment for changes in the composition of the capital stock and total depreciation

that arise from this procedure.

15 In particular, the accumulation equation implies the steady-state relationship QI/K =[γK - (1-δ)]. 

Using a prime mark (‘) to indicate values from the unadjusted BEA data, the adjusted capital

stock is initialized from the relationship K/K ‘=QI [γK ‘- (1-δ)]/Q ‘ I ‘[γK - (1-δ)], where initial

values were used for investment data, and the γK values were calculated using averages for the

first ten years of output and Q-growth. This calculation, which relies on an assumption that the

sample period began with the economy on (or close to) its steady-state growth path, yields initial

values for the adjusted capital series of about one-third the level of the BEA data.
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In addition to equipment and software, another important component of the

capital stock is nonresidential structures—accounting for approximately 35 percent of

nominal nonresidential fixed investment in the period 1948-2001.  Gort, Greenwood, and

Rupert (1999) examined the measurement of quality improvement in structures, and

estimated that the official NIPA investment data understate real, quality-adjusted growth

by approximately 1 percent per year.  

To account for this source of investment-specific technology growth, an adjusted

measure of this component was constructed by adding 1 percentage point to each year’s

growth rate in real nonresidential investment (subtracting 1 percent growth annually from

the growth rate of its price index).  The resulting adjusted series is then aggregated by

chain-weighting with the adjusted measure of equipment and software investment, to

produce a quality-adjusted aggregate for total private nonresidential fixed investment.

1.3  Growth Accounting with Investment-Specific Technology

The data for quality-adjusted investment and its associated price index form the

basis for estimating the contribution of investment-specific technology to productivity

growth.   First an index of investment-specific technology, Q, is constructed as the ratio

of the consumption price index to the price index for (quality-adjusted) investment

goods.  

The estimates of Q, along with associated data for quality-adjusted investment are

then used to construct an adjusted capital stock series that takes account of  investment-

specific technological progress.  First, the NIPA data for investment and capital are used

to back out a series of implied depreciation factors, (1-δt).
14  These factors are then used

to construct a capital-stock series using a perpetual-inventory method—that is, by

reconstructing the capital stock using the capital accumulation equation (3) using the

quality-adjusted investment data.  The initial value for the capital stock is adjusted using

growth rate and level relationships implicit in the accumulation equation to relate

investment/capital ratios in the adjusted and unadjusted BEA data.15  The growth rate of



16For both the growth-accounting exercise and the parameterized model simulations presented

below, capital’s share (α) is set to 0.30. 

17 Hansen’s (2001) survey paper on techniques for identifying structural breakpoints includes a

description of each of the tests reported here.
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the adjusted capital stock exceeds its unadjusted BEA counterpart by about 2.3 percent

over the period 1950-2001, but the pattern of fluctuations in capital growth is affected

little by the incorporation of unmeasured quality improvement: the official and adjusted

measures move closely together, having a correlation of 0.88.   Regardless of the measure

used, capital growth reached a peak in the late 1960s and slowed dramatically in the late-

1980s.

With the capital stock adjusted to incorporate growth associated with investment-

specific technological progress, the final step in the growth accounting procedure is to

calculate the remaining technology that takes the form of total factor productivity, using

the growth accounting relationship in equation (1).16

Figure 2 shows the measures of technology derived from this procedure.  As

found in previous studies, the explicit inclusion of investment-specific technology growth

has the effect of lowering measured  TFP growth.  Since the early 1970s, growth in Zt has

been negligible on average, with potential productivity growth driven almost entirely by

Qt.  Cursory inspection of the trends for the two types of technological progress also

suggests the possibility that shifts in growth rates preceded changes in productivity

growth in the early 1970s and mid-1990s:  There is a clear slowdown in neutral

technology growth in the late 1960s, and the appearance of an acceleration of investment-

specific technology growth sometime in the mid-1980s.

[FIGURE 2]

3.  Identifying Shifts in Technology Growth Trends

3.1 Tests for Structural Breaks

Formal time-series tests for structural breaks confirm the presence of these trend

shifts.  Modeling each of the technology growth series an AR(1) process with a constant

term, the tests reported in Table 1 present evidence of statistically significant breaks in

each of the technology series.17  

For neutral technology growth, Bai’s (1994) least-squares variance test identifies

a clear breakpoint in 1967.  Tests of structural change based on Chow sequences identify

the same date being associated with a shift in the constant term, as well as a shift in the



18Tests for structural breaks in an alternative measure of Q constructed using NIPA data–without

adjustment for unmeasured quality-change–yield similar results, verifying that the estimated

breakdate is

19Tests for a change in the autoregressive parameter alone (not reported in Table 1) suggest a

possible break in 1989, but it is not statistically significant (p-value = 0.12).

20Cummins and Violante use a procedure similar the one used here, but they used time-series

forecasting methods rather than simple linear extrapolation to extend the series.  They did not,

however, explicitly adjust for some of the methodological improvements adopted by the BEA that

are considered here.  On average, the growth rate of investment-specific technology calculated

using the Cummins and Violante data exceeds my measure by more than one percentage point

over the period 1984-2001.
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full regression (a joint test for a break in the constant term and the autoregressive

coefficient). In both cases, supremum test statistics exceed Andrews (1993) critical

values for significance at the 5 percent level.

For investment-specific technology growth the specific timing of a structural shift

is not as clear, but its presence is nevertheless confirmed.  The least-squares variance test

identifies 1983 as the breakdate, as does the Andrews test for a structural change in the

full regression.18  Testing specifically for a change in the constant term, there is a local

maximum in the Chow sequence in 1983 that exceeds a 10 percent Andrews test statistic,

but it is dominated in the supremum test by a peak in 1987.   The indication of a 1987

breakdate for the mean  is significant at the 10 percent level, with an approximate p-value

of 0.06 (calculated using the method of Hansen, 1997).19

Coefficient estimates from the regressions associated with these break dates 

indicate that the mean growth rate of neutral technology declined from 1.71 percent to

0.13 percent in 1967, and that the growth rate of investment-specific technology rose

from 2.22 percent to 3.70 percent in 1987.  In terms of technologically feasible labor-

productivity growth, equation (5) relates these estimates to an initial decline of 2.3

percent, and a subsequent increase of 0.6 percent.  

As a test of the robustness of these findings, Table 1 also reports break-point tests

for two alternative sets of technology growth rates.  The first set uses the unadjusted BEA

data, the second uses the extrapolated values of Gordon’s drift-ratios for equipment

investment as estimated  by Cummins and Violante (2002).20  The Cummins-Violante

factors were used to construct technology growth variables using an identical procedure

to that described in the previous section. 
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TABLE 1:

TESTS FOR STRUCTURAL BREAKS IN TECHNOLOGY GROWTH a 

Least-Squares Chow Tests for Structural Breaks

Variance Test
b

Full Regression  Constant Term

Variable Breakdate

[90% C.I.]

Breakdate Sup(W)  P-value
c

Breakdate Sup(W)  P-value
c

Z 1967 1967 12.808** .024 1967 8.454** .045

ZBEA 1967 1967 17.664** .003 1967 12.442** .007

ZCV 1967 1967 14.873** .010 1967 10.038** .021

Q 1983 1983 11.289** .047 1987 7.785* .061

QBEA 1983 1983 20.831** .007 1987 16.413** .001

QCV 1983 1983 31.316** .000 1983 13.691** .004

 

* (**) Exceeds the 90% (95%) critical values using a 20% trim, as calculated by Andrews (1993)
a AR(1) specification of logged first differences; sample period 1951-2001.

b Breakdate and confidence interval estimation using the method of Bai (1994).

c Approximate asymptotic p-values as calculated by Hansen (1997)

All three measures of neutral technology growth identify the 1967 breakpoint. 

Similarly, the least-squares variance tests and the Chow tests for a break in the full

regression suggest a shift in investment specific technology growth in 1983.  Although

tests of the series based on the Cummins-Violante data suggest a break in the constant

term in 1983 as well, the series using unadjusted BEA data confirms the 1987 breakpoint

(at a higher significance level).  That the unadjusted BEA data suggest the same

breakpoints as the adjusted data is reassuring—suggesting that the findings are not

unduly biased by the extrapolation procedures used to update the Gordon data set.

As will be shown below, estimates from a Markov switching model also support

the 1987 breakdate.



21French (2001) uses a similar approach for estimating changes in the trend of total factor

productivity growth.
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3.2 A Regime-Shifting Model

As an alternative approach to identifying shifts in technology growth rates, a two-

state Markov-switching model (Hamilton, 1990, 1994) was fitted to each of the

technology growth series.21  For xt =∆ln(Zt), ∆ln(Qt),

where the means, µ, and standard deviations, σ, are functions of the unobservable two-

state index variable, sxt, and ~N(0,1).  The indicator variables follow Markov chains:ε xt

In the estimation, state 1 is taken to be the initial state—the high-growth state for Z and

the lower-growth state for Q.

Hamilton’s (1994) method for estimating this type of model employs a Bayesian

state-space filtering algorithm for generating conditional estimates of the state at each

point in time.  In particular, inferences about the state variable are estimated by iterating

on equations (8) and (9):

where the ξ are two-element vectors representing estimated probabilities of being in

states 1 or 2, P is the Markov-transition matrix with elements given by (7), ηt is a vector

of the conditional densities, f(x | sxt ), and the symbol denotes element-by-element⊗
multiplication. 

By assuming that the conditional densities are represented by mixed normal

distributions, equations (8) and (9) can be used to estimate the parameters of the model

values using maximum-likelihood techniques. The parameter estimates found using this

approach are reported in Table 2.  For both technology growth variables, the high-growth

and low-growth states are quite persistent, with transition probabilities associated with

staying in the current state very close to one.  Note that the mean growths rates are nearly

identical to those found in the structural break-test regressions reported above.
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TABLE 2:

PARAMETER ESTIMATES FOR MARKOV-SWITCHING MODELS* 

Variable µ(1 ) µ (2) r σ2(1) σ2(2) p(1,1) p(2,2)

Z 1.747

(0.654)

0.176

(0.362)

-0.037 

(0.170)

4.206

(2.049)

3.313

(0.863)

0.967

(0.048)

0.978

(0.028)

Q 2.334

(0.412) 

3.758 

(0.262) 

0.194

(0.136)

 

3.949

(0.938) 

0.535

(0.232) 

0.978

(0.028) 

0.963

(0.054)

 

* Standard errors in parentheses.

To illustrate the regime shifts identified with this estimation, note that the filtering

procedure used to estimate the model generates a series of probabilistic inferences about

the current state that can be used to express the conditional expectation of xt as

Figure 2 illustrates these estimated sequences of expected growth rates for the two

technology variables, using smoothed estimates of the inferences about ξ.  As indicated

by the structural-break tests reported above, the series for neutral technology growth

displays a shift that is centered on 1967.  For investment specific technology growth, the

estimated probability of having shifted to state 2 rises slightly in the early 1980s, but

increases sharply only during the latter part of the decade, with the largest one-year

change taking place in 1987.

[FIGURE 3]

4.  Simulations in a Neoclassical Growth Model

The changes in long-run technological growth rates identified in the previous

section pre-date the conventionally-recognized changes in labor productivity growth by a

number of years.  An important question is how we can account for the lags.  As cited in

the introduction, a number frictions have been proposed regarding the adaptation and

diffusion of technology.  In general, these explanations focus on the delays associated

with the effective implementation of particular technological innovations.  But in

considering changes in the growth rate of technological progress, a more fundamental

analysis of dynamics is that described in Section 1: the capital accumulation channel of

the basic neoclassical growth model.  In this section, I report simulations of a calibrated
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DSGE model that trace out the endogenous capital-deepening effects of exogenous

changes in balanced and investment-specific technological growth rates. 

 Two versions of the model are considered: In the first – a “full information”

specification – technology growth rates are subject to one-time shifts that are

unanticipated, but fully recognized once they occur.  This specification corresponds to

the stark nature of the structural break tests reported in Section 3.1.  In the second

version, agents are assumed to be solving the Markov-switching specification estimated

in Section 3.2.  This version of the model can be thought of as representing a “Bayesian

learning” framework.

While the full information model is shown to provide a somewhat better overall

fit to the data, the Bayesian learning version provides very similar long-run long run

implications, verifying the robustness of the model’s general implication that endogenous

capital-deepening is consistent with low-frequency patterns observed in the data.

4.1.  Model Structure

The basic structure of the model is as follows: An infinitely-lived  representative

household maximizes utility over consumption and leisure 

subject to a budget constraint that incorporates both neutral and investment-specific

technology,

Our interest here is to consider the effects of changes in the growth rates of Zt and

Qt on patterns of capital accumulation.  The nature of these effects can be

illustrated—and distinguished from those of transitory shocks to the level of

technology—by considering the fundamental Euler equation governing capital stock

dynamics: 

An increase in the expected future level of either technology variable, Qt+1 or Zt+1,

raises the expected future marginal product of capital.  An increase in Qt also raises the

effective return to current investment.  Shocks to the levels of the technology variables,

whether transitory or permanent, have the effect of increasing investment demand,

resulting in an increase in equilibrium investment and capital accumulation.

The effects of changes in the long-run growth rates of technology variables can be

seen by examining a steady-state version of equation (10),



22Specifically, the solution algorithms of King, Plosser and Rebelo (1988a) are adapted to allow

for changes in underlying growth trend variables.
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where k = K/(γK)t, a stationary-inducing transformation (described more fully in the

following subsection).

Equation (13) states that the equilibrium net marginal product of capital is equal

to the real rate of return in the economy, which in turn depends on the underlying growth

trends.  (The parameter σ  represents the coefficient of relative risk aversion in

consumption.)

Using the steady-state growth relationships (4) and (5), the capital/labor ratio can be

expressed directly as a function of the long-run technology growth rates,

It is straightforward to show that k/N is decreasing in γZ and γQ — a higher growth

rate of technology, of either type, is associated with a lower capital/labor ratio.  An

increase in the growth rate of either technology variable has the direct effect of raising

the growth rates of output, consumption, capital and productivity.  However, the

relationships shown in equations (13) and (13') reveal that the increase will also be

associated with a shift in the level of the capital stock (relative to labor) as the real

interest rate increases and the optimal marginal product of capital rises.  By lowering the

equilibrium capital/labor ratio, an increase in technology growth has a transitional effect

of that dampens the growth rate of capital.  The effects of a shift in technology growth

are therefore quite distinct from those accompanying shocks to the level of technology

relative to trend.

4.2  Simulation Methodology

Simulations of the dynamic responses to these shocks are generated using standard

techniques for solving a stationary log-linear approximation of the model, modified to allow

for long-run technology growth rates to be subject to occasional shifts.22  

First, a stationary representation of the model is derived by dividing each of the

time-t variables by growth factors, Xit, where Xit+1 = γX Xit.  As a result of this

transformation, these growth factors emerge as parameters of the stationary system. For



23The model also includes the standard equation that relates the marginal rate of substitution

between consumption and leisure to the marginal product of labor.  The specific effects of

allowing for endogenous labor-leisure choice will be considered below.
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example, using lower case variables to represent transformed (stationary) variables  [e.g.

kt = Kt/Xkt], the capital accumulation becomes,

and the Euler equation takes the form

Equations (14) and (15) describe the important dynamics of the model economy,

where changes in the lower case variables will now represent out-of-steady-state

movements.23  Equations (13) and (13') showed that the long-run effects of changes in

technology growth rates are reflected in the steady-state interest rate and the capital-labor

ratio.  But equation (15) differs in that it includes dynamics associated with changes in

the marginal utility of consumption. Now, if we consider a shift in technology growth

that changes the γ-terms in (15) the dynamic transition path will involve adjustment along

margins on both the preferences-side and production-side of the model.  As illustrated in

section 1, risk-averse agents will seek to smooth consumption, which is associated with a

gradual  adjustment of the capital-labor ratio.  Moreover, a wealth causes consumption

growth to “jump” in the same direction as the change in technology growth, moving

capital growth (and the capital-deepening component of labor-productivity growth) in the

opposite direction.

To simulate these transition dynamics, I use a standard method of taking log-

linear approximations of the model’s equations around a baseline steady-state, then

solving the resulting dynamic system using methods like those described by King,

Plosser and Rebelo (1988a) and King and Watson (1998).  But rather than treating the

growth-trend variables as fixed parameters of the system, they are allowed to be time-

varying.  For example, equation (14) is linearly approximated as,

where the carat or  “hat” values represent proportional deviations of the variables from

their baseline steady-state values, and the time subscript on represents a change in$γ kt



24King and Rebelo (1993) employ a similar approach to simulating capital transition dynamics. 

Rather than considering changes in the technological growth rate, however, they evaluate

perturbations of the capital stock from its long-run value to generate transition dynamics back to

the steady state. The two exercises are conceptually identical, tracing the transition path of the

capital stock from an initial out-of-steady-state position to its equilibrium steady-state value.  
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the expected future growth rate relative to the baseline steady-state.  Equations  (4) and

(5) relate the growth-rate variables in (14) and (15) to the underlying technology growth

trends, which are assumed to be exogenous variables of the system.

In general, the exogenous technological growth variables take the form,

In the full-information version of the model, the autoregressive parameters, ρX, are set to

unity: breaks in the technology growth rates are immediately recognized and assumed to

be permanent.  In the Bayesian learning version, those parameters will be determined by

the mapping of the Markov-switching processes onto the AR(1) structure of the linearly

approximated system.

By treating the growth trends as exogenous and time-varying, the log-linear

approximation of the model is used to simulate approximate transition dynamics in

response to a growth rate shifts.24 Simulated growth rates of the underlying variables can

then be recovered from simulations as the sum of the baseline steady-state growth rate,

the change in the growth rate, and the first-differences of the simulated dynamic

responses of model variables; for example,

4.3  A Calibrated Demonstration

The model is calibrated at an annual frequency using long-run average data, and

with parameter values that are generally consistent with RBC analyses and growth

accounting exercises.  Capital’s share of output, α, is set to 0.30, and the capital

depreciation rate, δ, is calibrated to the average ratio of depreciation to the net stock of

nonresidential fixed private capital in the BEA’s Fixed Reproducible Tangible Wealth

accounts—approximately 6.5%. The household discount factor, β, is based on a real

return to capital of 6%.

For the model simulations, the form of the utility function is specified as:



25The labor supply elasticity (with respect to the real wage rate) is given by ζ-1(1-N)/N, so that the

calibrated parameter values imply that this elasticity is approximately equal to one.  This value is

higher than is typically found in microeconomic analysis, but lower than values commonly used

to calibrate macroeconomic models.  The unitary elasticity is consistent with some recent work

seeking to reconcile the discrepancy between the micro and macro literature; e.g., Chang and Kim

(2003, 2005).  In any case, the particular value of this parameter turns out to be quantitatively

unimportant in the analysis.
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i.e., the coefficient of relative risk aversion is set to unity.  The preference parameter χ is
selected so that the fraction of time spent working of 0.24, and the labor supply elasticity

parameter, ζ , is set to equal 3.25  

To demonstrate the dynamic adjustment paths following changes technology

growth and to compare the implications of neutral and investment-specific growth

shocks, consider one-time shifts that permanently raise the trend rate of productivity

growth by one-half percent, from 1.5% to 2.0%.  For the purposes of this demonstration,

investment-specific technology growth is calibrated to account for one-half of the initial

1.5% growth trend.  Changes in each of the two types of technology growth are

considered independently, where each shift is calibrated to deliver the one-half percent

change in productivity growth, dln(γZt) = (1-α) ×.005 or dln(γQt) = [(1-α)/α] ×.005.

Figures 4 and 5 illustrate the transition dynamics associated with these shifts.  The

growth rate of the capital stock, shown in Figure 4, illustrates the fundamental

endogenous dynamics of the long-run transition path.  An increase in either type of

technology growth raises the optimal marginal product of capital, giving rise to a period

of slower capital growth as the capital/labor ratio adjusts to its new level. As illustrated in

Figure 1, the wealth effect on consumption demand creates an initial decline in

investment, so there is a period during which capital growth falls below its initial trend

rate before converging to the new higher rate.  The slowdown is more pronounced for a

change in investment-specific technology growth, reflecting the fact that this form works

directly  through capital-deepening and is therefore associated with a larger eventual

increase in the growth rate of the capital stock.

[FIGURE 4]

Figure 5 shows the growth rates of labor productivity and its capital-deepening

component, αK/N.  These series display an additional source of dynamics that was not

present in Figure 1: The initial wealth effect of the change in technology growth pertains

to leisure as well as consumption, so there is decline in the growth rate of labor supply

associated with the recognition of the shock.  The growth shifts are modeled as changes

in expected future growth from period T  forward, so that the potential productivity

growth trend increases in periods T+1 and beyond.  At time T, the wealth effect on labor
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 supply lowers work effort.  Given the predetermined capital stock, this results in a

transitory increase in the growth rates of both K
T
/N

T
 and Y

T
/N

T
.   Thereafter, the transition

path of the capital stock drives the adjustment dynamics of these growth rates. 

[FIGURE 5]

Growth from capital deepening falls below its initial rate and only gradually

converges to the new higher trend.  As a result, labor productivity growth remains below

the new long-run trend for some time.  In the case of a shift in neutral technology growth,

productivity growth reaches half of its ultimate increase only after 4 years.  It takes 12

years for productivity growth to reach 90 percent of its eventual increase.   The effects of

transition dynamics following a shift in investment-specific growth are even more

dramatic: Because it effects growth solely through the capital-deepening component, the

investment-specific growth shift results in productivity growth falling below its original

trend rate, and it takes 10 years before productivity growth reaches half of its long-run

increase; 90 percent of the adjustment is achieved only after 19 years have passed.

3.5  Model Simulations Using With Structural Breaks (Full Information)

This section presents simulations of the full-information model using values for

technology growth rates and their shifts, as estimated in the structural-break test

regressions. 

 Figure 6 compares the model’s predicted growth rates for labor productivity and

the capital labor ratio to those in the data.   The model simulation identifies growth-rate

paths that appear to fit the longer-run trends in the data fairly well.  The simulation

produces a surge in capital deepening in the late 1960s that has the effect of delaying the

slowdown in productivity growth following the downward shift in neutral technology

growth.  In response to the increase in investment-specific technology growth in the late

1980s, capital deepening and overall productivity growth slow before rising gradually

toward the end of the sample period.  The correspondence between the simulations and

the data is clearest in the comparison of capital stock growth rates in the third panel of

Figure 6.  Although the timing and magnitude of the turning points differ between actual

and simulated series, both display a key peak in the late 1960s and a slowdown in the late

1980s, followed by gradual adjustment to the new steady-state growth rates.

[FIGURE 6]

As shown in the first row of Table 3, the correlations between the simulated series

and the data are 0.54 for productivity and 0.24 for the capital-deepening component. 

Note that these correlations do not simply reflect the effects of the exogenous shifts in

technology growth:  The second row of Table 3 shows the correlation of actual data with

the steady-state growth components only, constructed by assuming that the relationships
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in equations (4) and (5) hold period-by-period.  Without the endogenous model

dynamics, the labor productivity correlation is slightly lower, but capital-deepening

correlation is essentially zero.  A comparison of the slower-moving capital-stock growth

rates shows this even more clearly: The correlation between actual and simulated growth

rates is 0.48, while the correlation of the data with only the exogenous growth

components is negative. The positive correlation for capital and the capital deepening

component of labor productivity are entirely attributable to the model’s endogenous

dynamics.

TABLE 3:

 CORRELATIONS OF SIMULATED GROWTH  RATES WITH DATA

  FULL-INFORMATION MODEL

Annual Growth Rates Low-Pass Filtered Data*

Variable Y/N K/N K Y/N K/N K

Correlation of Actual

with Simulated Data 0.544  0.243 0.479 0.973 0.870 0.606

Correlation of Actual

with Growth

Component Only

0.492  0.007 -0.295 0.864 -0.044 -0.411

 

    * Filtered data are generated using the band-pass filter described by Christiano and Fitzgerald (2003), 

       with a specification that isolates cyclical components with a periodicity of 12 years of longer.

Note that the higher-frequency variability in the labor productivity and

capital/labor ratio, attributable to the wealth effect on labor supply, does little to

contribute to the fit of the simulated variables to the data.  Hence, the inclusion of

variable labor-leisure choice would not appear to contribute to the ability of the model to

match longer-run productivity growth patterns.  In fact, these high frequency dynamics

tend lower the correlations between actual and simulated series reported in Table 3.

 To focus more directly on the slower-moving components of fluctuations, Figure

7 compares actual and simulated series that have been smoothed using the band-pass

filtering method of Christiano and Fitzgerald (2003).  A low-pass filter specification was

used to identify fluctuations in the data with cycle periodicity of 12 years or greater.

[FIGURE 7]



26This approach to constructing log-linear approximations of a Markov-switching process is a

similar to Schorfheide (2005), in which the long-run inflation rate is modeled as being subject to

regime shifts.  The analysis in this paper is a simplified application of the technique, which is

supported by representation theorems in Sims (2001). 
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The longer-run relationship between actual and simulated series is apparent in the

smoothed data, particularly for the capital growth rate and the capital-deepening

component of productivity growth.. Though differing slightly in magnitude and phase,

the low-frequency cycles isolated by the filter generally show striking similarities

between actual and simulated series.  Correlations comparing these series, also reported

in Table 3, show that the simulated and actual series are very highly correlated.  The

exogenous growth shifts still account for much of the correlation between the filtered

series for labor productivity, but the model’s endogenous dynamics still fully account for

the correspondence between actual and simulated movements in capital growth and the

capital-deepening component of productivity growth.  In the absence of endogenous

dynamics, the correlations in the second line are both negative.  The slight improvement

in labor productivity correlations seen by comparing the two rows in Table 3 can

therefore also be attributed to the endogenous dynamics of the model.

3.6  Model Simulations with Regime-Shifting (Learning)

Perhaps a more realistic view of changes in technology growth rates is provided

by the estimates from the Markov-switching model in Section 2.3.  In this section, I

consider simulations of a model in which agents are assumed to solve the inference

problem given by (6)-(9), allowing for “learning” about the shift in technology growth

regimes.26

In order to map the regime-shifting framework onto the Canonical difference-

equation structure of the model, we need to express a log-linearized version of the

Markov-switching process in the general form of equation (16).

It will be convenient to take the linear approximation around a baseline steady-

state defined by the unconditional expectation of the two technology growth-rates,

expressed as functions of the estimated parameters of the Markov-switching processes. 

For each of the technology growth variables, γ = γ Z, γQ ;

where the composite expressions weighting the mean growth rates are the ergodic

probabilities of being in the two states.  



27See also Hamilton (1994), p. 684.

28That the autoregressive terms are close to, but not equal to one reflects the property of the

regime-shifting model that there is always a small probability of moving to the other state.

29In this case, the initial conditions of the simulation are set by running the model for 30 years

prior to the start of the sample, using the initial values of ξt|t (which are associated with a very

high probability of being in state 1 for both technology growth rates).  This initialization period

- 22 -

( )$ ln( ) ln( )γ γ γ µ µ1 1

11

11 22

1 2

1

2
= − =

−
− −

−
p

p p

( )$ ln( ) ln( )γ γ γ µ µ2 2

22

11 22

2 1

1

2
= − =

−
− −

−
p

p p

[ ]$ $ $
|γ γ γ ξXt X X t t= 1 2

(19)

[ ]E Pt Xt X X t t( $ ) $ $
|γ γ γ ξ+ =1 1 2

(20)

ε γ γ γ ρ γXt Xt t Xt Xt X XtE= − = −− −
$ ( $ ) $ $

1 1
(21)

When γ is in state 1, its logarithmic deviation from the baseline steady-state is 

and when γ is in state 2, 

More generally, the conditional expectation of  will depend on the estimated sequence$γ t

of probabilities, ξt|t,

and from equation (9) the time-t expectation of xt+1 is 

Note that the time varying nature of the growth states is entirely summarized in

the vector of probability inferences, ξ. For the two-state Markov processes considered, it

can be shown that  is independent of the state, and is given by p11+ p22 - 1Et Xt Xt( $ ) / $γ γ+1

(the stable eigenvalue of the probability transition matrix, P).27  For the linearly

approximated simulations, this is the appropriate value to use for ρX in equation (16). 

Given the parameter values reported in Table 2, ρZ = 0.945 and ρQ = 0.941.28  The

sequence of disturbances fed into the model, which implicitly include terms associated

with agents learning about the states, can then be calculated as:

The trend-shift estimates derived using smoothed inferences about the state

probabilities, (illustrated in Figure 2) are used to generate a simulation of this version of

the model.29  The results of this exercise, illustrated in Figure 8, show a somewhat muted



allows the capital stock to converge to near its steady-state value at the start of the sample period.
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version of the simulated paths found in the full-information simulations of the model. 

The more gradual adjustment of expectations about changes in long-run growth rates

dampens the sharp response of labor that generated high-frequency movements in Y/N

and K/N in Figure 7, tending to improve the fit of the model.  However, the learning

framework also dampens the magnitude of capital-growth responses relative to the full-

information simulations.  

[FIGURE 8]

The correlations of actual and simulated data reported in Table 4 show that the

learning model provides a slightly improved fit for productivity and capital-deepening

relative to the full information model, but with a slightly lower correlation between actual

and simulated capital stock growth rates.

TABLE 4:

 CORRELATIONS OF SIMULATED GROWTH  RATES WITH DATA,

REGIME-SHIFTING MODEL

Annual Growth Rates Low-Pass Filtered Data*

Variable Y/N K/N K Y/N K/N K

Correlation of Actual

with Simulated Data 0.553 0.369 0.405 0.967 0.828 0.476

Correlation of Actual

with Growth

Component Only

0.515 0.010 -0.303 0.890 -0.002 -0.368

   *Filtered data are generated using the band-pass filter described by Christiano and Fitzgerald (2003), 

     with a specification that isolates cyclical components with a periodicity of 12 years of longer.

Again, to focus on the lower-frequency movements, Figure 9 shows actual and

simulated series that have been smoothed a low-pass filter. The longer-run movements in

the simulated series still correspond generally to patterns in the data, but fail to fit the

magnitude of growth rate changes as well as in the full-information simulations.  As was

the case in the earlier simulations, however, the endogenous dynamics of the model are

responsible for  the correspondence between actual and simulated growth rates of capital
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and the capital-deepening component of productivity.  In the absence of the model’s

dynamics, the correlation of these growth rates with the underlying technology-growth

shifts are zero or negative, in both the filtered and unfiltered data comparisons.

[FIGURE 9]

4.  CONCLUSION

The model examined in this paper suggests that the adjustment of capital to a

change in technology growth implies a long period of transition before the shift is fully

reflected in productivity growth.  This is particularly true if the technology change is

investment-specific.

Statistical tests show that there was, in fact, an increase in the rate of investment-

specific technology growth in the late 1980s, partly reversing the decline in potential

growth from a downward shift in TFP growth in the late 1960s.  The pattern of capital

stock growth and the capital-deepening component of productivity growth display

subsequent fluctuations that are generally consistent with the model’s predictions.  These

findings suggest that capital adjustment dynamics have been an important factor

explaining the apparent lag between the pace of technological innovation and the growth

rate of labor productivity.

The adjustment mechanism identified in this paper contributes to an explanation

of the lag, but is not proposed as an alternative to other theories that emphasize

technology diffusion and adaptation.  For explaining the lag between early advances in

ICT and their manifestation in aggregate measures of investment-specific technology

growth, frictions associated with the adaptation and diffusion of technological

innovations are very likely relevant.  

The fact that the model does not fully predict the timing or magnitude of the 

trough in capital-stock growth in the early 1990s suggests that the simple framework

simulated in this paper fails to account completely for the lags between the identified

shift in investment-specific technology growth and the productivity acceleration of the

late 1990s.

Nevertheless, the ability of the model to replicate some of the key salient features

of the data suggests that the capital-adjustment channel examined here is important for

evaluating patterns of productivity growth.  The analysis suggests that the rapid

productivity growth of the late 1990s has its origins in accelerating technology trends

dating back nearly a decade, with the lag between the technology growth shift and the

productivity acceleration largely accounted for by the capital accumulation dynamics that

are implicit in a neoclassical growth paradigm.
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 Data Appendix

A1.  Basic Data Set: Summary

Variables are constructed as follows: 

PI:  A quality-adjusted measure of the price deflator for private nonresidential fixed

investment.   Details of the quality-adjustment methodology are described below.   

PC:  The price deflator for nondurable consumption goods and services, calculated as the

ratio of nominal expenditures on nondurables plus services to a chain weighted aggregate

of those two consumption components (1996 dollars).

Q:  The relative price of quality-adjusted investment goods in terms of consumption: P
C
 /P

I.
 

C:  Real Consumption of nondurable goods and services, chain-weighted 1996 dollars.

I:   Nominal private nonresidential fixed investment, deflated by P
C
.

Y:  Nominal gross business output, deflated by P
C
.

K:  The capital stock is generated iteratively from the accumulation equation, beginning

with a 1948 base of equipment and structures from the Fixed Reproducible Tangible

Wealth tables (BEA). Capital stock observations are updated using annual real figures for

private nonresidential fixed investment and depreciation rates derived from the wealth

tables (details below).

N: Hours of all persons, as used in the calculation of business sector productivity (BLS).

Z:  The Solow residual, calculated using a capital share of 0.30 and a labor share of 0.70.

All variables are transformed into per capita terms using annual figures on total resident

population, as reported by the U.S. Census Bureau. 

A2.  Estimating and Incorporating Embodied Technological Change 

In recent years, the BEA has been very diligent in adapting its methodologies to

the rapid rate of innovation in the information and communications technology (ICT)

sectors.  In addition to the introduction of hedonic indices for computer equipment and

purchased software, quality improvement has been examined and incorporated in

measures for telephone switching equipment, cellular services and video players, among

others.  Indeed, the BEA has even changed its aggregation methodology to more
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accurately measure the contribution of quality change to GDP growth: the adoption in

1996 of a chain-weighting methodology was intended to allow aggregates to track

quality-improvement better over time.

Nevertheless, many economists contend that a significant amount of quality

change goes unmeasured in the official statistics, particularly in cases where quality

improvement is more incremental.  As detailed in his 1990 book, The Measurement of

Durable Goods Prices, Robert Gordon undertook to quantify the extent of this

unmeasured quality change.  Drawing data from a variety of sources, including special

industry studies, Consumer Reports, and the Sears catalogue, Gordon compiled a data set

of more than 25,000 price observations.  Using a number of methodologies, he compiled

the data into quality-adjusted price indexes for 105 different product categories, then

aggregated the data to correspond to the individual components of the BEA’s measure of

producers durable equipment expenditure.  In particular, he calculated a “drift ratio”,

representing the difference between the growth rates of his quality-adjusted price data

and the official NIPA price indexes, then aggregated the components to create a new real,

quality-adjusted investment series.

Table A1 shows trends in the drift ratios calculated by Gordon for individual

components of investment spending.  The table is organized by the more recent

categories and definitions for Private Nonresidential Fixed Investment in Equipment and

Software, which differs somewhat from the taxonomy used at the time of that Gordon

constructed his drift ratios.  (Some specific differences will be discussed in more detail

below).  The growth rates in Table A1 represent the spreads between the official growth

rates and the growth rates of Gordon’s quality-adjusted measures.  

Over the span of the entire sample period, 1947-83, the drift ratios are uniformly

positive, indicating unmeasured quality improvement.  In many cases, the magnitude of

the quality adjustments is remarkable.  Not surprisingly, Gordon’s estimates of

unmeasured quality improvement are particularly large for the high-tech categories of

computing and communications equipment (prior to the adoption by the BEA of hedonic

methodologies for these categories).   Drift ratios for some components of transportation

equipment, particularly aircraft, also indicate substantial under-measurement of quality

change over the post-war period.  

Generally speaking, the magnitude of the drift ratios is smaller in the later years

of the sample period (and in some cases, marginally negative).  This observation is

consistent with the hypothesis that the official statistics more accurately measure quality

change in the 1970s and 1980s than they did in earlier decades.    

The bottom-line of Gordon’s study was that the official NIPA data understated

the true growth rate of investment spending by nearly three percentage points over his

post-war sample period. Unfortunately, because Gordon’s data set extends only through

1983, some extrapolation is necessary in order to use his findings to evaluate recent U.S.

economic experience. 
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A3.  Applying Gordon’s Adjustments to Recent Data

In order to apply Gordon’s quality adjustment to more recent NIPA data, it is

necessary to make some assumptions about unmeasured quality adjustment in the post-

1983 period.  In addition, changes in the BEA’s definitions and methodology

implemented over the past two decades require some attention.

The basic procedure I adopt is to assume that the growth rate of unmeasured

technological change over the 1983-2001 period is the same as Gordon’s measured drift

rate over the last 10 years of his sample.  That is, Gordon’s actual drift ratios are

extrapolated to 2001 using the growth rates in the second column of Table A1.   The drift

ratios are renormalized to match the base period the NIPA data, then the price deflator for

each component is divided by the corresponding drift ratio to produce a quality-adjusted

measure of price for each of the components of fixed investment.  Deflating the nominal

series by these price indexes yield quality-adjusted measures of real investment

expenditure.

The drift ratios are extrapolated on a component-by-component basis and then

aggregated to create a quality-adjusted measure of total investment spending.  This

disaggregated approach is preferable to a simple extrapolation of the aggregate trend for

two reasons:  First, several changes in the BEA’s definitions and methodology have, for

some components, eliminated or at least mitigated the measurement problems found by

Gordon.   In addition, the procedure of re-aggregating the quality-adjusted components

using a chain-weighting methodology allows the role of changing expenditure shares

over time to be incorporated into the total investment data.

Of the changes to the BEA’s definitions and methodology, most apply to the

elements of information processing equipment and software.  Many of these changes are

consistent with recommendations from Gordon’s study.  First, the category previously

known as “office, computing and accounting machinery” (OCAM) was divided into two

categories: “computers and peripheral equipment” and “office and accounting

equipment.”  Most of the unmeasured quality change for this component was in the

computers and peripherals element, for which a hedonic price index approach was

adopted in late 1985.  Because current BEA practice carefully accounts for quality

change, Gordon’s calculations are superfluous for evaluating the growth rate of computer

equipment.  For the remaining elements of that category, data from Gordon’s Tables 6.1

and 6.2 (which detail the construction of a deflator for OCAM) were used to separate out

the computer component, with the remaining drift ratio to be applied to office and

accounting machinery.   

Software was incorporated as a component of fixed investment only in 1999, and

was therefore not examined by Gordon.  The BEA applies a hedonic approach to some

components of software investment: In particular, a hedonic index is used to deflate

prepackaged software, while in-house software is deflated using an input cost index. 



APPENDIX

30 See Parker (2000) and Landefeld and Fraumeni (2001).

31 Moulton and Seskin (1999).

32 Gordon, p. 538.
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Custom software is deflated using a weighted-average of these two deflators.30  This

practice amounts to applying a hedonic price index to about one-half of all software.  For

the purpose of this study, I assume that the BEA methodology accurately measures

quality change in software.

Next to computers, the largest drift ratios measured by Gordon were for

communications equipment.  In particular, Gordon found that the official price index for

telephone transmission and switching equipment (by far the largest item in the

communications equipment category) vastly understated improvements associated with

electronics and transmissions technologies in the 1960s and 1970s.  In 1997, the BEA

introduced a quality-adjusted price index for telephone switching and switchboard

equipment, and carried back these revisions to 1985 in the 1999 comprehensive revision

of the national accounts.31   Because these revisions addressed the most serious concerns

raised by Gordon about the measurement of quality change in communications

equipment, I assume that the post-1985 data accurately reflect quality improvements. 

Consequently, I use Gordon’s drift ratios and extrapolations only for years prior to 1985.

Another category that requires special attention is automobiles.  As shown in

Table 3, the automobile component showed a negative drift ratio over the 1973-83

period—suggesting that the BEA overestimated quality change over the decade. 

However, Gordon explains this finding as the result of a  “spurious decline in the NIPA

automobile deflator during 1980-83”32 that he attributed to the use of a deflator for used

cars that is inconsistent with quality-change measured in the index for new cars.   (Used

car sold from business enterprises to households—reflecting a reclassification from

business capital to consumer durables—represent a factor that subtracts from

investment.)  In the absence of this inconsistency, Gordon notes that the drift ratio for

automobiles would be close to zero for the 1973-83 period.  In 1987, the BEA began to

adjust used automobile by applying a quality-adjustment factor derived from its treatment

of new car prices.33  In the comprehensive revision of 1991, this change was carried back

to years prior to 1984.34  This change altered both the nominal and real data series on

investment spending for automobiles, and largely eliminated the “spurious decline” in the
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35 In addition, because the BEA’s methodological changes affected both nominal and real series, I

use Gordon’s actual price index figures (rather than applying his drift ratios directly to the

contemporary deflator series) for years prior to 1983.

36 This reclassification was associated with the incorporation of new data from the 1992 I-O

accounts.  See Taub and Parker (1997)

37 The “special industry machinery” component was one of six that Gordon referred to as

“secondary” categories, for which the underlying price data overlapped with the other sixteen
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automobile deflator for 1980-83.  Consequently, in extrapolating Gordon’s data on

quality change for autos, I assume a drift ratio equal to zero for the post 1983 period.35 

Some other re-classifications of the components of equipment investment proved

to be simple to address:  For example, the reclassification of analytical instruments from

the Photocopy and Related Equipment category to the Instruments category in 199736

required no special adjustments, because Gordon’s drift ratio applies to the combined

Instruments and Photocopy Equipment category that was in use at the time.  Similarly, a

reclassification of some equipment from Metalworking Machinery to Special Industry

Machinery was also innocuous, since Gordon found that the deflator for the latter was

based on a subset of raw prices from the former.  In calculating his drift ratios, Gordon

simply applied the same factor to both categories.37

Finally, there is the issue of aggregation methodology.  At the time of his writing,

Gordon criticized the BEA’s continuing practice of using fixed-weight deflators.  

Particularly in light of his modifications accounting for quality change, a fixed-weight

approach tends to underestimate the importance of goods that are declining in price (or

increasing in quality) while overstating the importance of goods that have rising prices. 

Gordon proposed the use of a Törnqvist index, which uses share weights from adjacent

periods to construct deflators for both the individual components of equipment purchases,

and for aggregating the totals.  The BEA subsequently adopted a “Fisher ideal” chain-

weighting formula that is similar to the Törnqvist approach in that it incorporates share-

weights from adjacent periods that are allowed to evolve over time. While the two

approaches are very similar, they are not identical.  For the purposes of this study,

however, I assume that the two methodologies are essentially interchangable.   While I

use Gordon’s Törnqvist-aggregated measures disaggregating and re-aggregating the

elements of OCAM into their contemporary definitional categories, I use the BEA’s

chain-weighting formula for aggregating the quality-adjusted components of investment

spending.

One further modification was made to the aggregate data on equipment and

software spending.  Prices in 1974 and 1975 were distorted by the removal of wage-price
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controls—a distortion that was exacerbated in Gordon’s data by the use of Sears

catalogue prices from the spring-summer issue, which was printed before controls were

lifted (see Gordon, p. 482).  The growth rates of Gordon’s quality-adjusted prices

therefore exhibit large fluctuations 1974 and 1975.  To prevent these extreme changes

from having an undue influence structural-break tests, price level data for 1974 is

adjusted by linearly interpolating between price levels of 1973 and 1975.  This

modification leaves the average of 1974 and 1975 growth rates unchanged, but eliminates

large swings evident in the original data.

A4.  Unmeasured Quality Change for Nonresidential Structures

The investment aggregate used in this paper includes both durable equipment and

structures.  In order to account for unmeasured quality change in the structures

component of the aggregate, I use the estimate of Gort, Greenwood and Rupert (1999).  

That study finds that the quality-improvement in structures that is not captured in the

official NIPA data amounts to approximately one percent growth per year.  

Consequently, I add one percentage point to each year’s growth rate in real nonresidential

structures over the sample period, then construct an adjusted real series.  This measure is

then aggregated by chain-weighting with the adjusted measure of fixed investment in

equipment and software to produce a total quality-adjusted measure of private

nonresidential fixed investment.

A5.  Construction of Capital Stock Data

With this measure of  investment in hand, the final step in compiling a quality-

adjusted data set is the construction of an aggregate capital stock measure.  The

procedure  used to construct the capital stock measure involves modification of the

BEA’s estimates of fixed reproducible wealth.38

The BEA uses a perpetual inventory method with geometric depreciation – the

same general form as in the capital accumulation equation in the model.  

Each year’s capital stock is constructed as he sum of undepreciated capital from the

previous year plus gross investment.39 



APPENDIX

assets depreciate during their first year in service at a rate equal to one-half of the annual

depreciation rate on existing assets.  This minor deviation from the capital accumulation process

assumed in the model was found to make very little difference in the pattern of adjusted capital

stock growth rates.  Consequently, the simpler formula which includes no depreciation for

current-year investment goods was used.

40 The BEA constructs measures of net stocks for individual components, then uses chain-

weighted aggregation to build aggregates.  The use of these annual depreciation factors

approximately adjusts for  changes in the composition of the capital stock and total depreciation
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To parallel this construction, I begin be using equation (A1) with data for net

stocks of private nonresidential capital and fixed investment to calculate a series of

implied depreciation factors.40  Given a starting value for the capital stock, an adjusted

measure is then constructed by applying these depreciation factors to the quality-adjusted

investment series, corresponding to QtIt in the model.  Because the capital stock variable

in the model represents capital available for production in the current year, the data are

shifted by one year so that end-of-year values for the capital stock in year T are dated to

represent beginning-of-period stocks in T+1. 

The starting value for the capital stock is calibrated by exploiting the steady-state

properties of the model.  Specifically, the accumulation equation (3) in the paper implies

that the investment/capital ratio depends on the capital stock growth trend and the

depreciation rate:

The ratio of the adjusted capital stock to the official BEA measure is therefore related to

the implied growth rates of the two measures, as well as the initial ratio of adjusted

investment to NIPA investment:

The numerator incorporates quality-adjusted investment (qi) and the associated growth

rate of capital, γK = γY γQ while the denominator is related to official investment (iNIPA)

and a measure γQ calculated official NIPA price indexes. Taking 1948 to be the base year,

the ratio of the quality-adjusted investment series to the official series is 0.44.  Average

growth rates of output and the relative prices of investment to consumption over the

subsequent 10-year period (1948-58) imply ratio of kADJ to kNIPA that is approximately

equal to 0.3.
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Table A1:

Drift in the Ratio of Official to Alternative Deflators for Components of 

Private Nonresidential Fixed Investment in Equipment and Software

   Growth Rates (Percent)

   1947-83      1973-83

Information processing equipment and software

  Computers and peripheral equipmenta       15.33  7.37

Softwareb  na   na

Communication equipment 6.42  8.13

Instrumentsc,d 3.50  2.99

Photocopy and related equipmentc,d 3.50  2.99

Office and accounting equipmente 6.80  6.82

Industrial equipment

Fabricated metal products 1.78 -0.42

Engines and turbines 3.50  0.47

Metalworking machinery 1.15  0.96

Special industry machinery, n.e.c.c 2.47  2.81

General industrial, incl. materials handling, equipment 1.79  1.25

Electrical transmiss., distrib., and industrial apparatus 2.09  0.40

Transportation equipment

Trucks, buses, and truck trailersc 3.00  0.56

Autos 1.35 -2.07

Aircraft 8.29  3.65

Ships and boatsc 1.93  1.39

Railroad equipment 1.47  1.78

Other equipment

Furniture and fixtures 1.44  0.53

Tractors 1.41  3.17

Agricultural machinery, except tractors 0.68 -0.19

Construction machinery, except tractors 1.62  0.68

Mining and oilfield machineryc 1.62  0.68

Service industry machinery 3.15  3.64

Electrical equipment, n.e.c. 1.08  0.18

Otherc 1.98  1.68

SOURCE:  Gordon (1990), Appendix B, Appendix C and Tables 6.11 and 6.12.

NOTES:

a. The official BEA statistics now incorporate quality-adjustment using a hedonic-price index 

approach, obviating the need to use Gordon’s figures.

b.  Software expenditures have been included in official measures only since 1999.

c. Classified by Gordon as  “secondary” category, with price data derived from primary categories.

d.  At the time of Gordon’s study, Instruments and Photocopy comprised a single component.

e.  Derived from data on the category of Office, Computing and Accounting Machinery, adjusted to

exclude computers and peripherals

n.e.c.  = not elsewhere classified.  
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       Figure 2:

      Neutral and Investment-Specific Technology

          (Log levels, Base = 1950)
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Figure 3:

Growth Rate Estimates from a Markov-Switching Specification
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Figure 4:

Capital Stock Responses to Technology Growth Shifts
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Figure 5:

Growth Accounting WIth Shifts In Technological Progress

A Neutral Technology Growth Shift
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      Figure 6:

Actual and Simulated Growth Rates - Full Information Model
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      Figure 7:

Actual and Simulated Growth Rates - Full Information Model
         Low-Pass Filtered Data*

Labor Productivity

0.0

1.0

2.0

3.0

4.0

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

P
e
rc

e
n

t

Capital Deepening Component

0.0

0.5

1.0

1.5

2.0

2.5

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

P
e
rc

e
n

t

Capital Stock

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

P
e
rc

e
n

t

Simulated Actual Growth Component Only



- 43 -

      Figure 8:

Actual and Simulated Growth Rates - Markov Switching Model
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      Figure 9:

Actual and Simulated Growth Rates - Markov Switching Model
         Low-Pass Filtered Data*
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