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ABSTRACT

We construct a parsimonious model ofthe U.S. macro economy using a state space representation and

recursive estimation. At the core ofthe estimation procedure is a prediction/correction algorithm based on

a recursive least squares estimation with exponential forgetting. The algorithm is a Kalman filter-type

update method which minimizes the sum of discounted squared errors. This method reduces the

contribution ofpast errors in the estimate of the current period coefficients and thereby adapts to potential

time variation ofparameters. The root mean square errors of out-of-sample forecast of the model show

improvement over OLS forecasts. One period ahead in-sample forecasts showed better tracking than OLS

in-sample forecasts.
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Introduction

Implicit in the use ofordinary least squares loss functions in econometric estimation is

the assumption oftime invariance of system parameters. Intuition suggests that in a

macroeconomic environment fundamental relationships among aggregate variables change over

time for various reasons such as the Lucas critique or compositional effects of heterogeneity.

Dynamic systems with time-varying properties present a fundamental problem in control and

signal processing. Sargent (1993) suggests that adaptation is an important part ofeconomic

dynamics when considering issues of learning and bounded rationality. Recursive estimation

methods play a key role in adaptation and tracking oftime-varying dynamics. A good survey of

the basic techniques used to derive and analyze algorithms for tracking time-varying systems is

provided in Ljung and Gunnarsson (1990),

The purpose of this paper is to use a recursive method to estimate coefficients of a

parsimonious model ofthe U.S. macro economy and compare forecast results to that of a simple

OLS model. We use the state space representation approach, where state variables (X) are used

to define the state ofthe economy at each period in time, and the control variable (u) is assumed

to be exogenously determined. Ifwe believe that the parameters ofthe system change slowly

over time, the ordinary least squares method can be extended by weighting current information

more heavily than past information. In this model we use a recursive least squares with

exponential forgetting algorithm to estimate the coefficients of the state space model.

The resulting “transition” matrix is used for a short run forecast of the state variables,

assuming time invariance afterthe end of the sample period. The root mean square ofthe
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forecast errors are better for this model than a simple OLS model. The rest ofthe paper is

organized as follows: Section 2 briefly discusses the state space representation and the recursive

least squares algorithm. Section 3 discusses the choice of variables and their transformations and

the parameters of choice for the algorithm. Section 4 presents the results of the model and

Section 5 concludes the paper.

2. State Space Representation and Recursive Estimation

The state space representation of systems’ is characterized by the choice of n state

variables (usually denoted by X) which are assumed to fully describe the system at any point in

time, a control variable (denoted by u) which is assumed to be exogenously determined and can

be used to move the system from its current state to another state, and a measured or output

variable (denoted by y) which is ofparticular interest. The system can thenbe described by a

triplet A, b, and c as in equations (1) and (2) below.2

X~=AX~1 ÷bu~ (1)

= C~X~ (2)

‘For this paper we assume a single-input single-output (SISO) system which means that our output and
control variables are scalars.

2 The system described is fully deterministic. Stochastic errors can be assumed to enter either additively or

in the coefficients.
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X is an n x 1 vector of state variables which describes the economy,3 A is an n x n matrix of

coefficients, u is a control variable (scalar), b is an n x 1 vector of coefficients, y is the output

variable (of interest), c is an n x 1 vector of coefficients. In a stochastic environment we assume

that the measurements of the variables are noisy and uncertain and the noise components are

independent, identical normally distributed disturbances. For this paper we will focus only on

estimating the state transition equation (1).

Recursive Least Squares with exponential forgetting:

Recursive Least Squares (RLS) estimation is a special case of the Kalman filter which can

be used to avoid the numerical difficulties of matrix inversion present in ordinary least squares

(OLS) estimation. OLS is applied to the first k observations ofthe data sample to determine a

starting point for parameter estimates. Each additional observation is used to update coefficient

estimates recursively, thus avoiding the need for further matrix inversion. With proper choice of

the initial conditions, the final estimator at the end of the sample period is equal to the OLS

estimator. Harvey (1993) summarizes the method. The RLS method with exponential forgetting

used here modifies the basic RLS updating algorithm to weigh new information more heavily.

The method is appealing forcases where time-varying parameters are suspected.

For an equation of the form

z(t) = ~T(t) e (3)

~ The accepted format is a first order difference equation. If additional lags of particular variables are
desired then the list of variables is expanded appropriately by defining lagged values of these variables as X’s. It can
be shown that an ARMA representation can be modeled by this first order difference equation model.
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where ® is a vector of model parameters and p(t) is a set of explanatory variables, the usual

quadratic loss function is replaced by a discounted loss function of the form

V(e,t) = l/2~ At~~
~T(~)e)2 (4)

where X is a number less than or equal to one and is referred to as the forgetting factor.

The recursive algorithm is given by

~(t) = ~(t-l) + K(t) (z(t) - pT(t) ~(t-1))
K(t) = P(t) .p(t) = P(t—1) p(t) (XI+pT(t)P(t_l) p(t)y’ (5)

P(t) = (I — K(t)pT(t)) P(t—l)/?~

The essential feature of the algorithm is that t- 1 estimates of e are adjusted with new information

by a transformation of the error in predicting z using ~-,and current p’s. The adjustment to the

error, K(t), is called the Kalman gain and is a function of the rate ofchange in the errors and is

weighted by the discount factor 2.. P(t) is the covariance matrix at time t. Both K(t) and the

moment matrix P(t) are updated recursively. In the state space model of equations (1) and (2),

z(t) is X~,p(t) is X~,and ~(t)is A(t), or p(t) can be [X, , u,] and e(t) would correspond to [A(t),

b(t)].

3. Data and Transformations Used

The choice of state variables was based on a variety of factors including availability on a

monthly frequency, explanatory capacity, timeliness of data release and available sample size.

From an initial list of 18 variables we decided that the U.S. macro economy can be
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parsimoniously described by twelve variables (transformed appropriately). We define the state

variable vector X as the following: consumption (CBM), investment(CPB), industrial production

(IP), changes in manufacturing inventory (MIM), changes in retail inventory (TRIT),

manufacturing inventory/sales ratio (MR1), retail inventory/sales ratio (TSRR), urban CPI

(PCU), total employment (LE), 3-month Treasury Bill interest rate (FTB3M), and M2 monetary

aggregate (FM2). We choose the control variable u as the Fed Funds rate (FFED). New

construction is used as a proxy for investment. The data are of monthly frequency, and the

sample period considered is January, 1981 through December, 1995.

The variable names are listed in Table 1 and following transformations were made: log

levels of CBM, CPB, IP, LE, FM2 and PCU; log differences ofMIM, and TRIT; MR1, TSRR,

FTB3M, and, FFED were untransformed.

First-differencing and deflation of data The objective of the forecasting model is to track

variables that may be changing over time. Despite evidence of unit roots in all variables except

MR1, TSRR and 3-month T-Bill rate (FTB3M), detrending ofdata via first differencing or

filtering was not deemed necessary for tracking purposes.4 Inventory datawas differenced for

two reasons: first, because change in inventory is a component of Gross Domestic Product (GDP)

and second, because including first-differences in inventories (instead of levels) appeared to

improve the model’s ability to capture turning points in the business cycle. Nominal values were

used for all variables along with the consumer price index as one of the state variables to observe

the effect of changes in fed funds rate on inflation.

~The existence of a trend does not adversely impact the performance of tracking algorithms. Results of unit
root tests are not reported here butare available.
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Estimation Procedure

The algorithm shown in equation 5 was used to estimate the coefficients for each variable

individually. The right hand side variables are the one period lags of all the state variables plus

the current period value of the control variable. The final period estimate ofcoefficients was

assembled into the equivalent A matrix and b vector for forecasting.

Choice of A, &,~,and P0 The P matrix was initialized as the identity matrix and the e ‘s were

initialized as an AR(1) process with coefficient 0.8. The forgetting factor, 2., was chosen to be

0.96411. This value of the forgetting factor reduces the weight of the error after 63 months, (a

period equivalent to the average length of postwar business cycles), to 10 percent. Lower values

of )~,which represent higher rates of forgetting, led to improvement in tracking but resulted in a

higher variance of the estimated e’ s over time. The model converges relatively quickly and

initial values affect only the early estimates in the sample. Using VAR coefficient estimates as

starting values for the parameters did no better than using unit roots as initial starts. Starting

coefficients of 0.8 on an AR(l) model were chosen to avoid any biases toward a unit root. High

variance on the initial P matrix, which is equivalent to a diffuse prior, resulted in higher variance

of ~and exaggerated the “turning points” in the forecast. Estimates of the A matrix were

nonsingular and had stable eigenvalues with the “typical” assumptions for 2~, ~,P0.

4. Results

The model is distinguished by the recursive technique which updates past estimates of

coefficients using the error in the one period ahead forecast. As a first test of the model’s

performance, the one period ahead forecast of the model for each state variable was recorded
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for each period in the sample and compared to the actual values. Since the initial values, ~,

of the parameters were chosen arbitrarily, and the dataused to adjust errors are limited

initially,5 the estimates took a few periods to converge. Once convergence was achieved, the

estimates tracked the actual values very closely. The Root Mean Square Error (RMSE) of the

in-sample forecasts of consumption, industrial production, employment, and CPI for the most

recent 60 month period (AKP) were monitored. The model was also estimated using OLS for

the period February, 1981 through December, 1995. In-sample forecasts from OLS and the

one-period ahead forecasts obtained using the recursive least squares procedure were

considered for the last sixty sample periods (91:01 - 95:12) and the percentage RMSE were

computed for the four variables of interest.6 Table 2 shows the comparison of the RMSE to

the OLS in-sample forecast for the same period. For all four variables the RLS with

forgetting had lower RMSE than the OLS.

Out-of-sample forecasts for 5-months (January, 1996 to May, 1996), were made using

the recursive least squares and OLS estimation procedures. Two different RLS out-of-sample

forecasts were made for comparison purposes. One assumed no new information was

available for updating the coefficients, the other assumed that coefficients were updated each

period. The 5-month forecast using the constant parameter estimates (A matrix) at the end of

~The recursive technique by definition uses only information from the past. Hence early
estimates use limited data.

6 The RMSE were computed after transforming the data back to their original form by

exponentiating the forecasted values. % RMSE was computed using the formula
2

1/nE ~~~‘xlOO

N ~
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95:12 (without update) is called AKP5. The second set of out-of-sample one period ahead

forecasts using the updated coefficients is called AKP1. The percentage RMSE from the out-

of sample OLS forecasts and the recursive least squares procedure forecasts are compared in

Table 3. For all variables except industrial production using the AKP1 method, the recursive

least squares model had a lower % RMSE than OLS. These results suggest that the recursive

least squares procedure provides better tracking and forecasting (both in-sample and out-of-

sample) than OLS for the model developed in this paper. Figures 1 - 4 represent the one

period ahead in-sample forecast for the last 24 months of the sample, the 5 period forecast

(AKP5) and the one period ahead forecast (AKP1) compared to actual values (for the last 29

periods) for the four variables of interest. As the figures show, the tracking is quite close in

all four cases.

Sensitivity to A: The estimation and forecasting results discussed above are obtained

by setting the forgetting factor equal to 0.96411. Sensitivity of the results to changes in the

rate at which past errors are discounted was studied by setting A equal to 0.8 and 1.0. The

percentage RMSE for the in-sample and out-of-sample forecasts of industrial production for

the three different choices of A are given in Table 4. RMSE is the lowest for the choice

A=0.9641 1 in almost all cases. Figures 5 and 6 compare the OLS forecasts with the recursive

least squares procedure (AKP5) forecasts for two different values of A. The graphs show that

the forecasts obtained using A=0.96 perform much better than OLS forecasts, while the

forecasts corresponding to A= 1.0 are worse than OLS forecasts. Figures 8 - 10 compare the

two sensitivity cases with the actual and the A=0.96 case. As expected, forecasts are more

volatile with lower A. This is because lower values of A weigh recent errors more heavily
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and the correction tends to be sharper in forecasts. For similar reasons we expect forecasts

with higher values of A to be smoother, and the figures show that the forecasts are indeed

smoother when A= 1.0. Although our choice of A was not an attempt to optimize, it does

better than the alternatives used in the sensitivity tests.

5. Summary and Conclusions

The purpose of this exercise was to develop a relatively parsimonious macroeconomic

model which might be useful for short term forecasts and would recognize the potential for

time varying parameters. Using a measure of per cent RMSE of in-sample and out of sample

forecasts, the model does better than a simple OLS model. Because there was little attempt

to steep the model in theoretical microfoundations, we would not recommend it at this time

for use in long-term forecasting. However, it is parsimonious enough to be used in the

decision making process.

Table 1 - List of Variables Used

Name Variable
1P Industrial Production
CPB Total New Construction
MIM Manufacturers Inventories
TRIT Retailers Inventories
MR1 Manufacturers Inventory/Sales Ratio
TSRR Retailers Inventory/Sales Ratio
FM2 M2 Money Stock
FTB3M 3-Month Treasury Bill (Auction Average)
PCU Urban Consumers Price Index (All Items)
LE Number of Civilians over 16 employed
CBM Personal Consumption Expenditure
FFED Fed Funds Rate
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Table 2 - % RMSE for (60 Period) In - Sample Forecasts

IP ICONS ILE IPCU
AKP 0.418 0.485 0.230 0.132
OLS 0.738 0.828 0.248 0.374

Table 3 - % RMSE for (5 Period) Out of Sample Forecasts

lIP ICONS ILE IPCU
AKP1 0.652 0.468 0.214 0.137
AKP5 0.608 0.389 0.429 0.301
OLS 0.626 0.808 0.582 0.393

Table 4 - % RMSE for Industrial Production For Different Values of Lambda

AKP5 AKP1

A=0.8 A=0.96 A= 1.0 A=0.8 A=0.96 A= 1.0

RMSE6O

RMSE5

0.699984 0.418171 0.521724 0.699984 0.418171 0.521724

0.649919 0.608086 1.481615 0.413427 0.651874 0.749956
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Figure 1: Actual vs. Forecast of Consumption
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Figure 2: Actual vs.Forecast of Industrial Production
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Figure 3: Actual vs. Forecast Employment
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Figure 5: AKP5 (lambda=0.96) and OLS Forecasts for lP
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Figure 6: AKP5 (lambda=1 .0) and OLS Forecasts for IP
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Figure 7: Forecasts (AKP5) of IP for Different Values of Lambda
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Figure 8: Forecasts (AKP5) of IP for Different Values of Lambda
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Figure 9: Forecasts (AKP1) of lP for Different Values of Lambda
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Figure 10: Forecasts (AKP1) of IP for Different Values of Lambda
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