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ON LEARNING AND THE STABILITY OF CYCLES

ABSTRACT

We study a general equilibrium model where the multiplicity of stationary periodic perfect foresight equilibria

is pervasive. We investigate the extentof which agents can learn to coordinate on stationary perfect foresight

cycles. The example economy, taken from Grandmont (1985), is an endowment overlapping generations

model with fiat money, where consumption in the first and second periods of life are not necessarily gross

substitutes. Depending on the value of a preference parameter, the limiting backward (direction of time

reversed)perfect foresight dynamics are characterized by steady state, periodic, or chaotic trajectories for real

money balances. We relax the perfect foresight assumption and examine how a population of artificial,

heterogeneous adaptive agents might learn in such an environment. These artificial agents optimize given their

forecasts of future prices, and they use forecast rules that are consistent with steady state or periodic

trajectories for prices. The agents’ forecast rules are updated by a genetic algorithm. We find that the

population of artificial adaptive agents is able to eventually coordinate on steady state and low-order cycles,

but not on the higher-order periodic equilibria that exist under the perfect foresight assumption.
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1 Introduction

1.1 Overview

The possibility of multiple stationary perfect foresight equilibria in certain classes of general

equilibrium models is now well established.’ Some of these stationary equilibria may be

steady states, but others can be periodic or even chaotic. Standard general equilibrium the-

ory makes no prediction as to whichof these many stationary equilibria might be achieved in

economies driven by actual human behavior. Many economists are presently trying to make

sense of this situation, often by arguing that some equilibria are more likely to be even-

tually observed than others, and therefore that these equilibria are the more relevant ones

for making predictions based on the model. One common approach involves replacing the

perfect foresight assumption with an adaptive learning scheme in order to determine which

of the multiple stationary equilibrium trajectories are stable under the learning dynamics.2

However, the use of learning as an equilibrium selection device has often been limited to ex-

amples where the degree of multiplicity of stationary equilibria is not too severe. Moreover,

in cases where stationary periodic equilibria have been considered, the learning analyses to

date have typically been strictly local; the question of which among many equilibria would

be selected under a plausible global learning analysis remains largely open.3

In this paper, we implement a certain type of global learning dynamic in a model that

sometimes possesses coexistent steady state, periodic and chaotic perfect foresight equilib-

ria. Our technique involves analysis of the dynamics generated by a population of artificial

adaptive agents. The environment is Grandmont’s (1985) endowment overlapping genera-

tions economy, in which there is a constant supply of fiat currency and where consumption

in the first and second periods of life are not necessarily gross substitutes. The model

supports two steady state equilibria: the Pareto inferior autarchic steady state, which is

characterized by a zero demand for fiat currency, and the Pareto optimal monetary steady

state, which is characterized by a positive demand for fiat currency. Under time separable

‘For a survey, see Azariadis (1993).2For asummary of this literature, see the surveys by Sargent (1993), Evans and Honkapohja (1992), and
Marimon and McGrattan (1992).

30f course, if any typeof stationary equilibrium is locally unstable under aparticular learning dynamic, it
will remain globally unstable under the same learning dynamic, and can be thus be ruled out as a candidate
for long—run equilibrium.
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preferences, and provided that the value of the coefficient of relative risk aversion for the

old agents is high enough and that of the young agents is low enough, it can be shown that

stationary perfect foresight equilibria may also exist in which the equilibrium dynamics are

characterized either as periodic or chaotic trajectories for real money balances, and that

these complicated stationary equilibria are also Pareto optimal. However, in such cases,

the forward perfect foresight dynamics are not well—defined, so that it is not clear that

there is a meaningful forward dynamic that could plausibly be assumed to converge to one

of these more complicated stationary equilibria. Thus while complicated perfect foresight

equilibria may exist in this model it is an open question whether or how such equilibria

might be achieved. Grandmont (1985) provided a complete analysis of the model under

the well—defined, backward (direction of time reversed) perfect foresight dynamics, and

demonstrated that the limit of these backward dynamics could be a complicated stationary

equilibrium.

Our approach is to create a meaningful forward dynamic by relaxing the perfect fore-

sight assumption andexamining how a heterogeneous population of artificial adaptive agents

might learn to forecast future prices in such an environment. Agents are differentiated (in

addition to birth dates) by the forecast rule they employ, and each agent solves an optimiza-

tion problem based on an individual-specific forecast for the future price. Agents’ forecast

rules are updated by a genetic algorithm, a population—based, stochastic, directed search

algorithm that generates new rules while retaining and improving upon those rules that

have performed well in the past.4 We conduct computational experiments with economies

defined in this way and report the results.

We interpret genetic algorithm learning as a powerful representation of trial-and-error

learning which has important advantages over many other models in the literature. Among

these are that: (1) beliefs are initially heterogeneous across agents, (2) the information

requirements on agents are minimal, (3) the genetic algorithm offers a natural model for

experimentation by agents with alternative forecast rules, (4) the heterogeneity of beliefs

allows parallel processing to be an important feature of the economy, (5) genetic algorithm

learning has been shown in other research to successfully mimic the behavior of human

subjects in controlled laboratory settings, (6) the learning model can be applied even in

4For an introduction to genetic algorithms see Goldberg (1989) or Michalewicz (1994).
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complicated problems, and finally (7) the initial heterogeneity of the population allows us

to initialize the system randomly, so that we are able to obtain some sense of the “global”

properties of our system under learning as opposed to the local analysis that is often em-

ployed in the learning literature.5 These features suggest to us that genetic-algorithm-based

models of learning have interesting features from an economic standpoint, and that such

a model of learning will allow us to address the question of what type of behavior might

reasonably be expected to arise in an actual economy or economic situation with a pervasive

multiplicity of stationary equilibria.

We report the results of 1,410 computational experiments. The experiments are orga-

nized around a single preference parameter: the coefficient of relative risk aversion of the

old agents (those in the second period of life). The relative risk aversion of the young agents

(those in the first period of life) remains unchanged in all of the experiments. The main

finding is that the population of artificial adaptive agents is able to coordinate their initially

heterogeneous beliefs so as to implement steady state or low—order periodic equilibria for

real money balances. For low values of the preference parameter, the artificial agents always

coordinate on the monetary steady state; in this case complicated stationary equilibrium

trajectories do not exist. However, as the preference parameter is increased, and the multi-

plicity of stationary perfect foresight equilibria becomes more pronounced, the population of

artificial agents frequently fails to coordinate on the cyclic equilibria that are picked out by

the limiting backward perfect foresight dynamics. Instead, coordination occurs on steady

state and periodic equilibria that are of lower periodicity than the equilibria predicted by the

limiting backward perfect foresight dynamics. Thus our long—run outcomes under learning

tend to be simpler (lower order) than outcomes under backward perfect foresight. However,

we alsofind that time to coordination tends to increase with the relative risk aversion of the

old agents over a large portion of the parameter space, and in addition, we find that when

cycles exist our systems can display qualitatively complicated dynamics for long periods of

time before eventually converging to the relatively simple, low—periodicity equilibria.

We reach two main conclusions based on these results. First, in the economies we study,

51n this paper, we use the term “global” to describe our analysis because it is based on a random
initialization scheme. We recognize that our analysis is not truly global, even computationally speaking, since
we did not complete multiple experiments based on every possible initialization for agivenparameterization.
Such an approach is beyond the scope of this paper.
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the initially heterogeneous beliefs of the agents eventually give way, leading to a situation

where all agents coordinate on a perfect foresight equilibrium. Thus, our results suggest

that agents can achieve coordination even in relatively complicated situations. Second,

the stationary equilibria on which agents coordinate are always relatively simple — either a

steady state or a low order cycle — and are always Pareto optimal. Our results suggest that it

is difficult for an economy comprised of optimizing agents with initially heterogeneous beliefs

to coordinate on especially complicated stationary equilibria, such as those characterized by

high—order periodicities, even though such coordination is a distinct possibility in this model

a priori. On the other hand, we are unable to rule out coordination on periodic equilibria

entirely, and we find that the transient dynamics of our systems can be persistent and

qualitatively complicated if (and only if) stationary periodic equilibria exist.

1.2 Recent related literature

Several recent studies have focused on certain aspects of learning in general equilibrium

models closely related to those studied in this paper. Woodford (1990) analyzes the lo-

cal stability of stationary sunspot equilibria in an overlapping generations economy where

the sunspot variable follows a two-state Markov process. All agents in this economy use

the same forecast rule, which is a version of the Robbins—Monro stochastic approximation

algorithm. Woodford provides conditions under which a stationary sunspot equilibrium

is (locally) an attractor under this learning algorithm. Our results amplify Woodford’s

conclusion in a closely related model, in that, first, a stationary perfect foresight periodic

equilibrium of order two can be an attractor on the basis of our more global learning al-

gorithm and second, these deterministic periodic equilibria can be viewed as limiting cases

of the two—state stationary sunspot equilibria studied by WoOdford. While Woodford’s

stability conditions only generally apply to two—state, stationary sunspot equilibria, our

results go further, suggesting that higher order (periodicity greater than two) stationary

periodic equilibria are unlikely to be attractors. That is, while equilibria characterized by

high-order periodicities may in principle be locally stable in an analysis such as Woodford’s,

they evidently have negligible basins of attraction relative to the space of definition of the

model in our analysis.

In a related study, Guesnerie and Woodford (1991) find conditions under which cycles
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will be stable under a learning dynamic in a one—step ahead forward looking model. In

their analysis, all agents form expectations according to a simple adaptive rule in which

the expected price is a convex combination of the actual and expected prices k periods

in the past. Guesnerie and Woodford (1991) conclude that cycles of any order might be

attractors under the learning dynamics in the systems they study, provided a condition

on the map describing the equilibrium conditions is met. When this condition is not met,

and such a possibility is shown always to exist depending on the nature of the equilibrium

map, their systems might converge to learning equilibria of the type studied by Bullard

(1994), limiting learning dynamics which are stationary but which are not perfect foresight

equilibria and which therefore involve forecast errors in perpetuity. The Guesnerie and

Woodford (1991) study suggests that a priori, the possibilities for the limiting learning

dynamics in our system are quite open. However, our learning model is considerably more

complex than one in which there is a simple adaptive learning rule used by all agents. In

a similar vein, Grandmont and Laroque (1986, 1991) as well as Grandmont (1985) study

general differentiable learning rules in one—step ahead systems and find conditions under

which these systems may or may not converge to cycles and steady states.6 Grandmont

and Laroque (1991) argue that it is easy to construct examples where the steady state of

an economic model is locally unstable under reasonably defined learning dynamics, while

Grandmont and Laroque (1986) and Grandmont (1985) suggest that periodic equilibria,

perhaps complicated, can be the ultimate outcome of similarly defined systems.

Evans and Honkapohja (1995) also study one step ahead forward looking systems, both

stochastic and deterministic. They imagine that agents all use a certain recursive algorithm

to compute the expected value of the variable of interest as a function of past observations

on that variable. They assume that agents prespecify a value of k, the periodicity of the

local equilibrium, so that in each case, agents are assumed to know the periodicity of the

equilibrium they are attempting to learn. The Evans—Honkapohja analysis makes use of

the theory of recursive stochastic systems associated with Ljung (1977) and imported to

economic problems of this type by Marcet and Sargent (1989), and they also relate their

necessary and sufficient conditions for stability of equilibria in the learning dynamic to the

6See Grandmont (1994) for a survey of this literature.
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concept of expectational stability as formulated in Evans (1989)! The Evans—Honkapohja

conditions suggest that local stability under learning will depend on the properties of the

map describing the equilibrium conditions, and that in principle it is possible to have many

equilibria which are (strongly E-) stable in the learning dynamics, so that while recursive

learning might reduce the set of equilibria regarded as plausible actual outcomes, it cannot

in general suggest a unique equilibrium. However, the case studied in the present paper is

somewhat special in this regard in that Grandmont’s (1985) example involves a unimodal

map with a negative Schwartzian derivative, which in turn implies that a single periodic

equilibrium among many will be (strongly E-) stable in the learning dynamics according to

the Evans—Honkapohja analysis. The monetary steady state will also be (weakly E-) stable

in the learning dynamics in this case, so that Evans and Honkapohja conclude that the

equilibrium actually observed would depend on the exact specification of the learning rule

used by the agents, in particular whether the rule is consistent with a steady state or with a

stationary periodic equilibrium of order k.8 In our model, agents’ learning rules are always

consistent with steady state and stationary periodic equilibria of many different orders.

We know of no research that analyzes stationary periodic equilibria such as those we

are interested in under genetic algorithm learning. However, research on genetic algorithm

learning by Arifovic (1994c) and Arifovic and Eaton (1994) does focus on coordination

problems that can be severe. Arifovic (1994c), for example, analyzes genetic algorithm

learning in the Kareken and Wallace (1981) model of exchange rates, in which the exchange

rate is indeterminate in the sense that any fixed exchange rate e E (0, oo) is a rational

expectations equilibrium. Arifovic (1994abc) alsoshows that the dynamics from experiments

with human subjects compare favorably to dynamics generated in the same economies with

genetic algorithm learning.

While experiments with human subjects are beyond the scope of this paper, we are

enthusiastic about testing the predictions of our genetic algorithm learning model against

7For asurvey of this topic, see Evans and Honkapohja (1992).8Evans, Honkapohja, and Sargent (1993) make a very different argument in the context of the same
overlapping generations model analyzed in this paper. They suggest that if a significant fraction of the
population uses misspecifled models because they view themselves as participating in an economy driven by
random processes, and these agents attempt to optimize against forecasts generated by using the uncondi-
tional distribution of past prices, then the possibility of stationary periodic equilibria will be eliminated. In
the present paper, agents have heterogeneous beliefs but theexistence of periodic equilibria is not threatened.
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such a benchmark. Van Huyck, Cook, and Battalio (1994) have performed an experiment

with human subjects in a repeated coordination game that shares some of the properties of

the model studied in this paper. In particular, their coordination game has two strict, pure

strategy Nash equilibria, one of which is an interior equilibrium. This interior equilibrium

is shown to be stable under myopic best response learning dynamics provided that the

game’s payoff parameter falls within a certain range; otherwise the myopic best response

dynamic leads to periodic or chaotic trajectories that cycle about the interior equilibrium.

The authors consider an experimental treatment where the payoff parameter lies either

within the range that assures stability of the interior equilibrium under the myopic best

response dynamic or lies far enough outside this range so that the myopic best response

dynamic converges to a period seven cycle. They find that, in contrast to the predictions

of the myopic best response dynamic, subjects always learn over time to coordinate on the

interior equilibrium, even in the parameterization where the best—response dynamics would

imply that the interior equilibrium is unstable (and the period seven cycle is stable). We

view these laboratory results as complementary to the findings we present in this paper,

because in both papers agents fail to coordinate on relatively high order cycles. However,

we differ from Van Huyck et al. (1994) in that the environment we consider sometimes

displays a dense set of periodic equilibria. We also note that in the overlapping generations

environment that we study, the complicated trajectories that agents are attempting to

coordinate on are equilibrium trajectories, whereas the period seven cycle in the Van Huyck

et al. (1994) experiment arises from the use of the disequilibrium, best response learning

dynamic.

Experiments with human subjects that have been conducted in an overlapping gener-

ations environment similar to the one studied in this paper include Marimon and Sunder

(1993, 1994, 1995), and Marimon, Spear, and Sunder (1993), with the latter paper being

the one most closely related to this paper. Marimon, Spear, and Sunder (1993) study a

two—period overlapping generations economy with preferences and endowments such that a

period two perfect foresight equilibrium coexists with the monetary steady state.9 Subjects

make predictions of future prices, and, analogous to our set up, the optimal level of real

money balances is computer generated for each subject given their price prediction. The

9No higher order perfect foresight periodic equilibria exist.
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number of subjects in a generation ranged from 2 to 5, while the number of new generations

(iterations) ranged from 27 to 67. The design of their experiment is somewhat different from

ours in that the authors systematically varied the size of the incoming generation (say: 3,

2, 3, 2, ...) in their experiments as a means of inducing real variation in the equilibrium

price level for the first phase of the experiment, and then subsequently kept the generation

size constant to see if the subjects might learn to coordinate on the period two equilibrium

once cyclicality in expectations had been established. In the experiments with changing

population sizes (real shocks), they also employed a sunspot variable by alternating the

color of some of the information presented on subjects’ computer screens such that the

sunspot was perfectly correlated with the real shock. The sunspot variable was left on at

all times, even when the real shock was turned off, and agents were not informed of the

presence of real shocks. The authors’ main finding is that in treatments where there were

real shocks in the initial phase and sunspots throughout, prices continued to display marked

periodicity of order two even after the real shock was turned off. In treatments without real

shocks in the initial phase (but with sunspots), subjects always learned to coordinate on

the monetary steady state. The authors conclude that it is possible for human subjects to

learn to coordinate both on steady state and on period two equilibria. These results match

up well with our own, as our genetic algorithm based learning model predicts that both

steady state and period two equilibria will be observed as long—run outcomes in a similarly

specified economy. Furthermore, their time series for the price level (Figure 3, p. 89) are

qualitatively similar to those generated in our computational experiments, even though our

systems had neither real shocks nor a sunspot variable. Finally, these authors argue that

equilibrium selection would appear to be path dependent, since periodic price dynamics were

only observed when there were real shocks in the initial phase. We note that our model also

predicts that equilibrium selection will be path dependent. By conducting a large number

of computational experiments, we are able to let conditions develop spontaneously that in

certain instances led our system to converge to a period two equilibrium, while Marimon,

Spear, and Sunder (1993) needed inducements in the form of the real shocks inorder to avoid

conducting a prohibitively large number of experiments.’0 Indeed, the major advantage of

‘°Insubsequent research, Marimon and Sunder (1995) observed two experimental overlapping generations
economies where inflation realizations were persistently cyclical in the neighborhood of a monetary steady
state of the model. These two economies were not subject to any real shocks, and there were no stationary
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our computational approach is that we are able to conduct many more experiments with

many more iterations across a wider variety of economies, and thus obtain a more complete

picture of the long-run outcomes that might reasonably be expected in environments like

this one.

Computational experiments with evolutionary algorithms (such as genetic algorithms) in

economic settings have been suggested by Holland and Miller (1991) and Sargent (1993) and

have been performed by Axelrod (1987), Miller (1989), Marimon, McGratten, and Sargent

(1990), Binmore and Samuelson (1992), Andreoni and Miller (1993), Arthur (1994), Rust,

Miller, and Palmer (1993, 1994) and Wright (1995) among others. These applications have

generally not been in competitive general equilibrium environments like we have in mind.

An exception is the work of Arifovic (1994abc).

2 The environment

The example economy is taken from Grandmont (1985). Time is discrete with integer

t E (—oo, oo). There is a single, perishable consumption good and a constant supply of fiat

money M > 0. There are ~ agents per generation, where N is the total population alive

at time t. Agents live for two periods, and can save between periods by holding fiat money.

Agents receive strictly positive endowments of the consumption good in each period of life,

{e,, e2 }. Preferences are given by:

— c~(t)’P’+ ct(t + 1)1_1~~2
— ‘—P1 1P2

where P1, P2 E (0,oo) denote the coefficient of relative risk aversion of the young and old

agents, respectively. The notational convention is that subscripts denote birthdates while

real time is recorded in parentheses, so that cj(j) denotes the time j consumption of the

agent born at time i.11 The agent born at time t maximizes utility subject to the pair of

budget constraints

Ct(t) ~ e~— st(t),

periodic equilibria in the neighborhood of the steady state. The observed cyclic behavior for inflation was
attributed to the stability of the adaptive learning system that subjects were thought to have used; the
linearized learning system, evaluated at the monetary steady state, had eigenvalues that were complex, with
modulus close to, or equal to one.

“While in principle there are many agents born at time t, we do not distinguish among them in this
section.

9



c~(t+1) ~ e2 + P~+1)st(t),

where 5t(t) denotes the amount the agent born at time t chooses to save at time t, and the

price of the consumption good in terms of fiat money is denoted by P(t). Combining the

first order conditions with the two budget constraints, one obtains:

c~(t)+ ~(t)(Ph/P2)/3(t)(C021)IP2) = e
1

+ e2J3(t) (1)

where /3(t) = P~-)I) denotes the gross inflation factor between dates t and t + 1. It fol-

lows from the compactness of the budget set and the strict concavity of the utility function

that the young agent’s consumption decision, ~j(t), and therefore his savings decision, st(t),

are uniquely determined. Since a closed form solution for ct(t) is unavailable, we will in-

stead rely upon numerical methods to obtain ct(t). Once the optimal consumption and

savings amounts are determined, it becomes possible to define a perfect foresight equilib-

rium sequence for prices (equivalently, for real money balances) using the market clearing

condition:

S(t)=~

where S(t) is aggregate savings at time t. Using this condition, and the fact that the

supply of fiat money M is constant, one can derive a first order difference equation that

characterizes all perfect foresight equilibria in this economy:

P(t) = S(t)P(t + 1).

Following Grandmont (1985), let us write this difference equation more compactly as:

P(t) = ~(P(t + 1)). (2)

A perfect foresight equilibrium is any sequence of prices {P(t)} that satisfies equation (2).

A steady state equilibrium is a price level 7~such that ~ = ~ It is well known (see,

e.g., Gale (1973)) that in this model, there can be at most two steady state equilibria, one

in which aggregate savings is zero and agents consume endowments, and possibly another

in which aggregate savings is positive and the steady state gross rate of return on savings

and its reciprocal, the steady state gross inflation factor, are both equal to unity. In the

analysis that follows, we choose an endowment sequence which guarantees that this latter

equffibrium exists, that is, that we have the Samuelson case in Gale’s terminology.
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As Grandmont (1985) demonstrates, these two steady states are not the only stationary

equilibria that this economy may possess. If the offer curve is sufficiently backward bending,

or equivalently, if the coefficient of relative risk aversion of the old agents, P2, is large enough

while the coefficient of relative risk aversion of the young agents, p~,is less than or equal

to unity, then in addition to steady states, the set of equilibria may also include periodic

as well as chaotic equilibria.’2 Our focus in this paper is limited to the steady state and

periodic equilibria that may arise in this environment. A periodic equilibrium of order k

consists of a sequence of k prices, ~ such that ‘~ = ~ j = 1,2,...k,

where 4’~denotes the kt~~iterate of the map ‘Ii. Grandmont (1985) noted that the forward

perfect foresight dynamics, that is, iterates of the map (1), may not be uniquely defined

depending on the properties of the map ~(.). Grandmont (1985) studied this system by

limiting attention to the backward perfect foresight dynamics, that is, sequences of prices

that solve the map (1) with the direction of time reversed. A periodic equilibrium oforder k

in the backward perfect foresight dynamics is a sequence of k prices {75k, i~~_i,..., P, } of the

map ~ such that i~= ~ j = 1,2, ..., k. Grandmont’s (1985) well—known main result

was to show that periodic equilibria of any order and chaos could exist as long-run outcomes

in the backward perfect foresight dynamics without abandoning the classical assumptions of

utility maximization and market clearing.’3 At least for periodic equilibria, this is enough to

proveexistence of complicated equilibrium dynamics in the more meaningful forward perfect

foresight system, because even though the forward dynamics are not uniquely defined, it is

at least in principle possible that agents would choose appropriately in the forward system so

as to replicate the trajectory uniquely defined in the backward perfect foresight dynamics.’4

In Grandmont’s (1985) model, when periodic equilibria exist, they coexist with other

equilibria, and in particular, they coexist with steady states. Sarko~3kii’s(1964) theorem

implies that ifa periodic equilibriumof order threeexists, then equilibriaof everyother order

q, where q is an element of the set of positive integers, also exist. This raises the question of

which among these many stationary equilibria might be achieved, and Grandmont (1985)

‘2Similarly, Benhabib and Day (1982) demonstrate thepossibility of periodic and chaotic equilibria in the
“Classical” version of this same model where the time patterns of endowments and preferences are reversed.

‘3The periodic equilibria in Grandmont’s model can be viewed as deterministic versions of sunspot equi-
libria first studied by Shell (1977) and Azariadis (1981).

‘4While in principle there are many agents born at time t, we do not distinguish among them in this
section.
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addressed this question by considering the limiting backward perfect foresight dynamics

and arguing that plausible learning rules exist that would, if used by all agents, cause

the system to be locally convergent to the periodic equilibria isolated under backward

perfect foresight. In particular, Grandmont (1985, Proposition 3.2, p. 1012) interpreted

a stationary equilibrium that was stable in the backward perfect foresight dynamics as

stable in the forward learning dynamics, and Grandmont gave conditions on a differentiable

learning rule under which such statements would be true.

In Figure 1, we replicate Grandmont’s (1985, p. 1030) Figure 4, which is a bifurcation

diagram in the backward perfect foresight dynamics. In this example, which we will use

throughout the remainder of the paper, {ei, e2} = {2, .5}, and the relative risk aversion of

the young is fixed at P1 = .5. The figure shows a plot of real money balances per capita,

which can range between zero and the first period endowment of 2. For each value of the

parameter representing the relative risk aversion of the old agents, p2, the backward perfect

foresight map was iterated 1000 times, using as an initial condition the peak of the unimodal

map. The last 50 of the 1000 iterations are plotted in the diagram. As the relative risk

aversion parameter is increased, a standard period-doubling bifurcation pattern emerges,

with the limiting backward perfect foresight dynamics being the monetary steady state

for low values of the risk aversion parameter and a periodic equilibrium of order three for

high values of the risk aversion parameter. Between these extremes, the limiting dynamics

involve cycles of mostly higher order, or perhaps of a very high order or even chaos, in

which case the plot of the last 50 iterations is inadequate to characterize the equilibrium.

Qualitatively, however, the figure is clear.

We now want to consider relaxing the perfect foresight assumption and introducing

genetic algorithm learning into this s3~~em.

3 Learning

3.1 Representation of a heterogeneous population

At every date t, there is a finite population of N agents participating in the economy. The

population is the same at every date and is equally divided between agents born at time t

and those born at time t — 1, so that the size of each generation is ~. Each agent in the
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population is differentiated by a forecast rule for next period’s price level. This forecast

rule completely characterizes the agent’s behavior in both periods of life, because the agent

takes the optimal action (makes the optimal savings decision) based on the forecast of next

period’s price produced by his own forecast rule. This forecast rule is represented by an

integer value k e [0,~].The rule is to use the price level that was realized k±1 periods in

the past as the forecast of next period’s price level. For example, consider a young agent i,

born at time t, who has chosen k~.If we let F,’[P(t + 1)] denote agent i’s time t forecast of

the price level expected to prevail at time t + 1, we can write agent i’s forecast rule as:

F[P(t+1)J=P(t—k~—1).

This specification of the forecast rule is simple, but has the important implication that each

young agent i can make optimal savings decisions in any type of stationary equilibrium

of order q, so long as q E [0, k + 1]. In fact, we chose this specification precisely because

it allows agents to adopt behavior consistent with steady state or periodio trajectories for

prices up to the limit k + ~~15We note that this class of forecast rules is more general than

it might first appear. While one could allow agents to use past data in more complicated

ways, perhaps even econometrically sophisticated ways, for our exercise to be interesting the

forecast rule must ultimately allow the agent to behave in a way consistent with any of the

equilibria of the model (up to some limit). In particular, if the economy is in an equilibrium

with periodicity q ~ k + 1, the forecast rule chosen must deliver a forecast consistent with

that equilibrium.’6 If it does not, then the agents cannot coordinate on that equilibrium.

For this reason, we think that it is reasonable to abstract from the question of how agents

manipulate the data and concentrate on specifying a class of rules such that agents can in

principle coordinate on any of the equilibria of the model up to some limit.’7

In order to apply the genetic algorithm, we must first encode each agent’s forecast rule

as a string of length £, with elements of the string chosen from the binary {O, 1} alphabet.

For example, if £ = 8, the string might be 00100101. This string value can be decoded to

~ the same reason other researchers who have studied the stabffity of cycles under learning, e.g.
Guesnerie and Woodford (1991) and Evans and Honkapohja (1995), have also assumed that agents form
expectations based on prices that prevailed k periods in the past.

‘6This is the requirement that the forecast rule be able to detect the cycle discussed by Grandmont (1985)
and Grandmont and Laroque (1986).

‘7For a discussion of the issue of how agents manipulate the data to derive forecasts see, e.g. Bray and
Savin (1986) or Duffy (1994).
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Bit string i~
0

Consistent with:
00000000 steady state
00000001 1 steady state, 2-cycle
00000010 2 steady state, 3-cycle
00000011 3 steady state, 2-cycle, 4-cycle
00000100 4 steady state, 5-cycle
00000101 5 steady state, 3-cycle, 6-cycle

11111111 255 steady state, 2-cycle, ..., 256-cycle

Table 1: Most strings are consistent with more than one stationary equilibrium.

the base 10 integer 38, which is the k-value that this agent uses in forecasting future prices.

Thus, this agent would use the actual price level that was realized k + 1 = 39 periods ago,

(i.e. P(t — 39)) as the forecast of next period’s price level. Of course, if the economy had

been in a steady state for each of the past 39 periods, then this forecast rule would give the

same predicted price as the string 00000000. In fact, all strings representing integer values

k E [0, k} are consistent with a steady state equilibrium, and many are also consistent with

periodic equilibria of other orders. The nature of this situation is described in more detail

in Table 1.

3.2 How forecasts are used

Given the young agent i’s time t forecast of the price level expected to prevail at time t +1,

F,~[P(t+ 1)], we can denote this same agent’s forecast of the gross inflation factor between

dates t and t +1 by:

— fl[P(t + 1)]

,8~(t)— P(t)

Using this forecast for gross inflation, the computer algorithm then numerically solves equa-

tion (1) for agent i’s consumption amount 4(t). The young agent i’s savings decision is

given by s~(t) = e1 — 4(t). Aggregate savings at time t is therefore given by:

N/2

S(t) = ~s~(t).
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The law of motion for the price level P(t) in the forward dynamics of our learning model is

given by:

P(t) = S(t_1)P(t - 1),

and thus P(t) is determined once S(t) is known. However, the quality of the time t young

agents’ forecasts cannot be evaluated until period t + 1, when S(t + 1) and thus P(t + 1) is

known. We now turn to a discussion of how we evaluate and update forecast rules.

3.3 Updating forecast rules using a genetic algorithm

While both the genetic algorithm and the overlapping generations model have some rather

obvious biological overtones, we do not interpret our model of learning as one of a strict

passing of genetic information from one generation to the next. Instead, we view the genetic

algorithm as a convenient device with which to model communication among individual

agents alive at date t. We imagine that agents who will enter the productive portion of their

life at time t + 1 (that is, agents who will be young next period) have had conversations

with some of the older agents alive at time t and have devised forecast strategies based

on these conversations.18 The result is a new generation of agents—the newborns . The

newborns become the next generation of young agents once the agents in the model are

aged appropriately. Because we create the newborn generation at time t and allow these

newborn agents to enter their productive lives at time t + 1, we can make use of the entire

set of genetic information available at time t to create the new generation. That is, we can

allow the newborns to converse with any of the agents participating in the economy, young

or old, at time t. Accordingly, we subject the entire population of N strings available at

time t to the four genetic operators that make up the genetic algorithm, and create the

newborn generation from this information. We now describe our implementation of these

four operators: reproduction, crossover, mutation and election.

3.3.1 Reproduction

To create the newborn generation at time t, we begin by calculating the fitness of each

string in the entire population of N agents alive at time t. First, each string is decoded

to determine its forecast rule. Next, the forecast rule is applied using the history of prices

‘8See Arifovic (1994b) and Bullard and Duffy (1994) for a similar interpretation.
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available through time t — 1, and a price forecast is determined. The reason for restricting

the forecast rule to the history of prices available through time t — 1 is that this restriction

enables us to assess how well the forecast rule would have performed had it been in use in

the previous period. Performance is measured in terms of the two period, lifetime utility

that the agent would have attained had the agent been young in the previous period and

possessed the forecast rule in question. In assessing the lifetime utility value, we use the

most recent realization of the gross inflation rate j3(t — 1) = P(t)/P(t — 1). Thus, the

lifetime fitness value is a measure of the accuracy of a particular forecast rule; the higher is

the lifetime fitness value, the more accurate is the forecast rule that was used.

Once the fitness values have been determined, we conduct one selection tournament for

each of the newborns we wish to create. Each tournament consists of a random selection

of two strings, with replacement, from the finite population of all N strings alive at time t.

The string with the higher fitness is copied and put into the group of newborn strings. This

process means that the higher fitness strings of the existing population tend to get copied

into the newborn generation.’9 Although we now have a set of newborn strings, we are

not finished, since we want to allow the newborn agents to experiment with new possible

forecast rules which may not be part of the genetic information set available at time t. The

next three operators accomplish the task of introducing new information into the system.

3.3.2 Crossover, mutation and election

The main idea of the crossover and mutation operators is to create new forecast rules by

mixing portions of existing strings together and by changing individual bits with small

probability. Accordingly, we randomly pair the newborn strings. Then for each pair we

perform the crossover operation: with some probability p’~> 0, we divide the pair of strings

at some randomly chosen point, s E [1,1 — 1], where £ is the length of each bit string, and

swap the bits to the right of the crossover point. With probability 1 — p’~we do not apply

the crossover operation to the pair of strings. As an example, suppose that we have apair of

strings of length £ =8 and that crossover is to be performed on these two strings. Suppose

19The tournament method of implementing the reproduction operator of the genetic algorithm has some
advantages over the “biased roulette wheel” methodology found in Goldberg (1989) and many other early
genetic algorithmimplementations. SeeFogel (1994) or Michalewicz (1994) for adiscussion. For a theoretical
analysis of tournament selection, see Blickle and Thiele (1995).
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also that the randomly chosen point is s 6. The pair of strings are divided at this point:

010100111

111001101

The portion of the strings to the right of the dividing point are then swapped, creating two

new strings:

01010001

11100111

The two resulting strings (even in cases where the two strings were not changed by crossover)

are then subjected to some mutation: we consider each bit value b = 0, 1 of the two strings

that result from the crossover operation, and with some probability pm > 0 we replace the

bit, b, with the bit 1 — b. With probability 1 — ptm, the bit value is not mutated.

We refer to the strings that result from crossover and mutation as alternatives, because

we think of the newborns (strings selected through reproduction) as contemplating adopting

some alternative forecast rules that may not be in use in the current population. In the

standard, “biological” application of the genetic algorithm, these alternatives would simply

become the newborn generation, but such an approach is less than satisfactory in economic

applications where agents are appropriately viewed as making intelligent choices. In partic-

ular, the standard application of the genetic algorithm would allow our alternative strings

to enter the population even if they are not strictly better (in terms of fitness) than the

newborn strings from which they were created. But we want to think of our economic deci-

sion makers as being somewhat less naive. Therefore, we adopt Arifovic’s (1994a) election

operator: each pair of newborns is compared with the corresponding pair of alternativeb.

Of the four strings, only the two with the highest fitness values are allowed to remain in

the generation of newborns, and the other two are discarded. Fitness of the alternatives is

computed in the same way as it is in the reproduction operator. The crossover, mutation

and election operators combined can be interpreted as a method of allowing new forecast

rules to enter the system without forcing agents to adopt rules that are unlikely to yield

high utility.2°
20The election operator is properly viewed as a modification of the selection/reproduction operator of the
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The reproduction, crossover, mutation and election operators have a simple economic

interpretation. Being ‘born’ in this economy means leaving one’s formative years and enter-

ing the productive portion of one’s life. These newborn agents just leaving their formative

years initially have no plans for the future—they are ‘blank slates.’ They acquire the fore-

cast rule they will need by communicating with a few other members of society, those either

one or two generations ahead of them. This communication is modeled via the reproduction

operator. In our implementation, each newborn agent communicates with two randomly

selected members of the society. The newborns evaluate the forecast rules that belong to

these two older agents by calculating how much utility the rules would have delivered had

they been in use one period in the past. Each newborn then copies the forecast rule of the

two that would have delivered the most utility. This completes the first step in attaching a

forecast rule to each of the incoming members of the society. But the newborns communi-

cate further when they talk with each other and contemplate alternative forecast rules that

might not be in use in the society at that time-that is, the newborns conduct a mental

experiment with other possible forecast rules. This additional communication is modeled

via the crossover and mutation operators. In our implementation, the newborns are paired

and each pair creates two alternative forecast rules by combining parts of their existing rules

into two new possibilities, and also by randomly changing small parts of the recombined

forecast rules. The two alternative forecast rules are evalutated to see how much utility

they would have delivered had they been in use one period in the past. Alternatives which

improve upon the newborns existing forecast rules are adopted, while alternatives which do

not are discarded. This last step is modeled using the election operator. Thus the incoming

generation learns from the experience of the agents older than themselves and also can be

innovative in introducing new forecast rules into the societ~’

Once the election operator has been applied, and a generation of newborn agents has

genetic algorithm. In the genetic algorithmliterature, a distinction is frequently madebetween pureselection
procedures and elitist selection procedures. See, for instance, Grefenstette (1986) or Rudolph (1994). In a
pure selection procedure, strings are chosen for reproduction based solely on principles of natural selection.
Elitist selectionprocedures involve twosteps. First, pure selection is performed. Second, the elitist procedure
stipulates that the best discovered string, either before or (in our case) after reproduction, always remains
intact into the next generation. Thus, our reproduction operator, together with our election operator,
comprise an elitist selection procedure. Rudolph (1994) has shown that an elitist selection procedure is
necessary, though not sufficient for the genetic algorithm to converge asymptotically to one of the perfect
foresight equilibria of the model.
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been chosen, time advances to the next period. The time t population of newborn agents,

created via reproduction, crossover, mutation and election, becomes the young generation

alive at time t+1. The generation of young agents alive at time t becomes the old generation

alive at time t +1. The generation of old agents alive at time t ceases to exist. The forecasts

of the time t + 1 young generation are determined, their savings decisions are calculated,

and the aggregate savings amount S(t+1) then determines the price level P(t+1) according

to the law of motion for prices P(t + 1) = s~±i)P(t).The genetic algorithm is then begun

anew. The algorithm ends when either a convergence criterion (described below) is satisfied

or the algorithm has reached the maximum number of iterations (generations) allowed.

3.4 Some advantages of genetic algorithm learning

We interpret genetic algorithm learning as a useful model of trial-and-error learning in a

heterogeneous agent economy. This learning model has many important advantages relative

to other models in the literature. First, beliefs are initially heterogeneous across agents,

a feature not often modeled in the learning literature to date.21 Second, the information

requirements on agents are minimal, as they only need to know their own utility and their

own forecast rule in order to make a decision. Third, the genetic algorithm offers a natural

model for experimentation by agents with alternative forecast rules, an important charac-

teristic of learning also rarely modeled in competitive general equilibrium environments in

the literature to date. Fourth, the heterogeneity of beliefs allows parallel processing to be

an important feature of the economy. That is, some agents are trying one forecast rule while

other agents are trying other forecast rules, with the better forecast rules propagating and

the poorerones dying out. We think this is closely akinto what goes on in actual economies,

where communication among agents encourages successful strategies to be quickly copied

and unsuccessful ones to be discarded. Fifth, the approach to learning we study can be ap-

plied even in complicated problems such as the one studied in this paper. And finally, the

initial heterogeneity of the population allows us to initialize the system randomly, so that

we are able to obtain some sense of the “global” properties of our system under learning as

opposed to the local analysis that is often employed in the learning literature. We think that

21For an alternative approach to systems with heterogeneous learning rules, see Evans, Honkapohja, and
Marimon (1994).
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these features provide good reasons to investigate the properties of genetic-algorithm-based

models of learning in systems where learning may have an important role to play. In the

present model the potentially important role for learning is equilibrium selection.

We chose to use a genetic algorithm, rather than some other learning/search algorithm,

because the genetic algorithm has a number of attractive features that are particularly

well-suited to the particular problem that we examine. First, unlike other search/learning

algorithms, the genetic algorithm is population-based, and involves parallel processing of

a finite set of initially heterogeneous strings; each of these strings can be viewed as rep-

resenting different candidate solutions to a particular optimization problem, or, as in our

interpretation, each string can be viewed as representing the belief of a different agent in

the population. The population—based genetic algorithm can be regarded as a global search

algorithm whereas “representative—agent” type search algorithms are necessarily local. The

implicit parallelism of the genetic algorithm also works to reduce computation time as com-

pared with enumerative search strategies and other search algorithms. As we have stressed,

we think parallelism is an important feature of coordination in actual economies or eco-

nomic situations. Second, the genetic algorithm is readily applied to difficult optimization

problems sometimes heuristically described as “rugged surfaces.” Unlike gradient—based

learning algorithms, (e.g. the Robbins-Monro or the least squares learning algorithms stud-

ied by Woodford and Marcet and Sargent or other hill—climbing algorithms), the genetic

algorithm does not require the taldng of derivatives. This feature makes the genetic al-

gorithm an attractive model of how populations of economic agents might update their

forecast rules over time in highly nonlinear environments such as the one we consider here.

Third, genetic algorithms are known to behave as excellent function optimizers. Holland

(1975) has shown that genetic algorithms optimize on the trade-off between searching for

new rules — exploration — and utilizing information discovered in the past — exploitation.22

Optimization of this trade-off is important: an algorithm that engages in too much explo-

ration discards feedback information early in the search that may prove useful, while an

algorithm that engages in too much exploitation is prone to local hill-climbing and may

be overly sensitive to noise. Finally, modelling learning behavior using a genetic algorithm

22HoUand’s “schema theorem” is proved by analogy with the two armed bandit problem and is found in
Holland (1975, pp. 75-88). See also Goldberg (1989, pp. 28-33).
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has the advantage that the exact specification of the problem that agents are attempting

to solve is known at the outset. Indeed, the representation of the agent’s problem is a

necessary prerequisite to the application of the genetic algorithm. Thus, interpretation and

evaluation of the results from applying the genetic algorithm become relatively straightfor-

ward. In contrast, neural networks and genetic programming techniques evolve structures

and programs that are often difficult to interpret.

For all of these reasons, we chose the genetic algorithm over several alternative methods

as a way of modelling learning behavior. This is not to say that other methods are not

interesting, but only to note that the genetic algorithm approach has a number of desirable

features.

3.5 Design of computational experiments

We conducted a set of 1,410 computational experiments using the genetic algorithm do-

scribed above in Grandmont’s example economy. We used the same set of parameter values

used to generate Figure 1, namely {ei, e2 } = {2, .5}, and P1 = .5. The preference parameter

P2 was initially set equal to 2 and was then increased to 16 by increments of .1. We set the

bit string length £ = 8 which allows the agents to take actions consistent with a periodic

equilibrium of an order as high as 256,23 We set N = 100 (so each generation consisted of

N/2=50 agents), pC = 1 and ptm
= 1/t? = .125; we chose these values based in part on the

optimal values recommended by Grefenstette (1986) and Back (1993) and in part because

the election operator that we use assures that strings that emerge from crossover and mu-

tation with particularly low fitness values will not enter the population, and so little is lost

by allowing agents to experiment extensively with alternative strings.

For each of the experiments, we created an initial population of 50 old and 50 young

agents randomly (that is, each bit in each string was set equal to 1 with probability .5 and 0

with probability .5). We initialized prices by choosing 256 random numbers from a uniform

distribution on the unit interval. We then repeatedly applied the genetic algorithm and

computed market clearing prices until either convergence was obtained or 2,000 generations

had failed to coordinate on an equilibrium (that is, after 2,000 iterations).

23With this choice for £, we are explicitly ruling out the possibility of agents coordinating on periodic
equilibria of order greater than 256. Experiments with higher values of t, not reported here, did not appear
to produce qualitatively different behavior in our systems.
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Convergence was checked after each iteration of the algorithm using the following con-

vergence criterion. We checked for cycles of every possible periodicity, and we required that

the most recent ten prices matched the ten corresponding prices that occurred k +1 periods

in the past (k E (0,255)) up to a tolerance of 1 x 10b0.24 This criterion was met before

the 2,000 iteration limit in most of our experiments. This criterion is relatively easy on

high-order equilibria, since we check only ten prices on those cycles, but nevertheless we

did not observe high-order equilibria.

Once convergence was obtained or the maximum number of iterations was reached, the

same experiment was repeated again nine more times, so that we have ten experiments

for each of the 150 values of P2 and a total of 1,410 experiments. For each iteration of

each experiment, we recorded several pieces of information: the price, the gross inflation

rate, and the mean value of real balances held by agents in the young generation. We also

recorded the mean base ten value of the strings, which we called mean position number, as

well as the standard deviation of the position number. If the standard deviation is zero,

then the strings are identical. We stress that our convergence criterion was price-based, so

that the fact that strings are identical does not imply that the system has converged. As we

will show, we sometimes found that strings were identical before prices met our convergence

criterion.

~Our specific convergence criterion is described by the following pseudo code:
convergenceyes
tolerance 1 x 10_b
for s=1, s~ maxcycle =256
for j=0, j 9
if [P(t — j) — P(t — j — s)] tolerance,

convergence=no
j = 10

endif
next j
if convergence—yes,

S = maxcycle + 1
endif

next S
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4 Experimental results

4.1 Overview

The main finding from our set of computational experiments is that in the economies we

study, the artificial agents eventually learn to coordinate on stationary perfect foresight

equilibria of Order k + 1, where k = 0, 1 or 3, and where k 0 refers to a degenerate cycle,

the monetary steady state. None of the economies we studied displayed coordination on

stationary equilibria of any other periodicities. We never observed the nonmonetary steady

state. We conclude from these results that simplicity may be a virtue for equilibria, as

simpler equilibria are more likely to be achieved in our systems.25 As mentioned in the

introduction, our finding that artificial adaptive agents tend to coordinate on relatively

simple equilibria is consistent with experimental findings with human subjects in similar

environments studied by Van Huyck, Cook, and Battalio (1994) and Marimon, Spear, and

Sunder (1993).

A second, related finding is that our systems under learning rarely chose a single equi-

librium from among the many possible equilibria as the only limit point. Instead, for most

values of ~, our systems sometimes converged to one stationary equilibrium, the monetary

steady state, and sometimes converged to another stationary equilibrium, a period two cy-

cle. In one case, the learning system had nearly converged to a period four cycle, and in two

other cases the system had not converged to any path resembling an equilibrium after 2,000

iterations. We conclude that while the introduction of learning into our economic systems

can sharply limit the set of equilibria that might be considered reasonable in the sense that

~they might be achievable even in systems where the decisions are made by humans, the

introduction of learning does not imply a unique stationary equilibrium, and there is no

guarantee that convergence will even occur in finite time.

A third broad finding is that while our systems almost always converged eventually,

they sometimes displayed qualitatively complicated dynamics for very long periods of time.

By complicated dynamics we mean that either the price dynamics do not appear to be

in a small neighborhood of any discernible equilibrium path, or that they are in such a

250ne could view this as a “strong stability result” in Evan’s (1989) sense because it is robust to “over-
parameterization,” meaning in our case that agents consider higher order cycles even though none exist for
low values of p~,
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neighborhood, but the path involves higher order periodic motion. These complicated

“transient” dynamics sometimes occurred in a region of the parameter space where cycles

exist in the backward perfect foresight dynamics, but never occurred in the region where the

monetary steady state was the lone efficient equilibrium. Thus, when the set of equilibria is

relatively complicated, the coordination problem is more pronounced and the economy may

remain out of equilibrium for long periods of time. We will provide examples of complicated

transient dynamics in the next section.

4.2 Specific results

In most cases, our systems did not converge to the same stationary equilibrium chosen by

the limiting backward perfect foresight dynamics studied by Grandmont (1985). For low

values of p2, in particular those below 4.2, we observed convergence to the monetary steady

state in every experiment, and this is the same prediction made by the limiting backward

perfect foresight dynamics (see Figure 1). But as p~is increased further, the limiting

backward perfect foresight dynamics display a bifurcation, with the monetary steady state

losing stability and never regaining it for values of P2 > 4.2. In contrast, in our systems

with learning, the monetary steady state was always a limit point in at least one of the

ten experiments conducted at each value of P2. In addition, for higher values of P2 and in

particular those past the first bifurcation point in the backward perfect foresight dynamics,

our systems often converged to a period two stationary equilibrium, even in cases where

that equilibrium too had lost its stability in the backward perfect foresight dynamics. Other

relatively simple periodic equilibria, such as the period three cycle that is stable in the

backward perfect foresight dynamics for values of P2 > 13, appear not to be attractive in

our learning dynamics, as they were never observed in our computational experir~ients.26

The raw data from all of our 1,410 experiments is summarized in a table in the Ap-

pendix. Looking at this table, one will notice that we encountered numerous cases of

nonconvergence, in the sense that our convergence criterion had not been met within the

allotted 2,000 iterations, and that these cases were especially common for higher values of

P2~Nevertheless, we regard most of these cases as near convergent situations (rather than
26We note that the “relatively simple equilibria” we observed all had aperiodicity that is one of the first

few entries in Sarkovskii’s ordering. Since three is the last entry in that ordering, one might view it as a
“complicated” equilibrium.
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cases of nonconvergence), since in every instance save two the system was very close to

converging to a period two stationary equilibrium. If the experiments had been continued

beyond the upper limit of 2,000 iterations in these cases, we have little doubt that our

convergence criterion would have eventually been met, and that the system would in fact

have converged to a period two equilibrium. Generally, we found that when our systems

converged to the monetary steady state, they spent relatively few iterations in the imme-

diate vicinity of this steady state value, by which we mean that the last ten prices were all

equal up to five significant digits. In contrast, when our systems converged to a cycle of

period two, they often spent several hundred iterations in a similar immediate neighborhood

of the equilibrium before finally meeting our convergence criterion. Since this process of

locking on to the period two equilibrium often took a long time, it is not surprising that

our 2,000 iteration limit was often encountered in these cases.27 This situation might have

been helped somewhat by a less stringent tolerance.

The specific convergence results from our experiments can be seen by comparing Figure

2, in which we plot the limiting dynamics of our adaptive learning system for each value

of P2, with Figure 1, which plots the limiting backward perfect foresight dynamics for each

value of P2. There are slight differences in the methods used to construct these two figures.

Figure 1 replicates Grandmont’s (1985, p. 1030) Figure 4, and plots the last 50 of 1,000

iterations of the backward perfect foresight system for each value of p2, taking as the initial

condition the peak of the unimodal map. Figure 2 plots the fixed points of any of the

stationary equilibria to which the system under our adaptive learning algorithm converged

in any of the ten computational experiments completed at agiven value ofp~.If the learning

system failed to meet the convergence criterion within the allotted 2,000 iterations, then

the last 50 of the 2,000 iterations were plotted.

As an example, consider Figure 2 for the value ~ = 5. Some of the ten experiments

conducted for this value of p2 resulted in convergence to the monetary steady state, while

others resulted in convergence to the period two cycle that is predicted by the limiting

backward perfect foresight dynamics (see Figure 1) ~28 Therefore, there are three fixed

2~’The2,000 iteration limit was chosen in order to conserve on the amount of computer time it took to
complete our computational experiments.

28Tbe exact number of times the algorithm converged to a particular type of equilibrium can be found in
the table presented in the Appendix.
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points plotted in Figure 2 for P2 = 5. The middle point corresponds to the steady state

value for real money balances while the outer two points correspond to the stationary two—

cycle values for real money balances. As one can see from Figure 2, the outcome of the

ten experiments performed for P2 = 5 is the same outcome observed for virtually all other

values of P2 > 4.2; in some experiments the learning system converged to the monetary

steady state, while in others the system converged to a stationary, monetary period two

equilibrium. A comparison between Figures 2 and 1 conveys the relative simplicity of the

set of long—run equilibria under learning as opposed to that set under backward perfect

foresight. The exceptional cases in Figure 2 occur for a single computational experiment

each when P2 = 4.7, P2 = 7.5 and P2 = 12.1. In the first and third of these cases, the

system did not approach anything resembling an equilibrium in 2,000 iterations, and the

corresponding plots of the last 50 iterations show no clear pattern in Figure 2. In one

experiment where p2 = 7.5, the system finished 2,000 iterations very close to a period 4

stationary equilibrium, and the last fifty iterations in this case are also plotted in Figure

2.~

The fact that there was wide variation in the number of iterations to convergence can be

observed inFigure 3, which depicts the mean number of iterations to convergence foreach set

of the ten computational experimentsconducted foreach different value of P2. In cases where

the system failed to converge within 2,000 periods, the number of iterations to convergence

included in the sum used to calculate the mean is 2,000. Thus, the reported mean number

of iterations to convergence underestimates the actual mean number of iterations it would

have taken the system to achieve convergence, had the system been allowed to continue in

those experiments where nonconvergence results were obtained. In the figure, there is a

noticeable spike in the mean number of iterations to convergence near the first backward

perfect foresight bifurcation point at around p~= 4.2 (cf. Figure 1) as well as near (less

obviously) the second and third bifurcation points. Thereafter, as ~ is further increased,

the bifurcations occur more and more frequently and the mean number of iterations to

convergence shows a marked tendency to increase up to the point where p,~= 13. At this

point, the limiting backward perfect foresight dynamics of Figure 1 indicate the presence of

29~ in other cases of “near convergence” where the systemwas close to converging to a period two cycle

after 2,000 iterations, we are quite confident that this single run that is very close to a period four cycle at
2,000 iterations would eventually have met our convergence criterion.
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a period three cycle, and thus, via Sarkovskii’s (1964) theorem, periodic equilibria of every

order q exist, where q is an element of the set of positive integers. In this complicated region,

there is a marked decrease in the mean number of iterations to convergence. This decrease

is due to the increased tendency of the learning system in this region to coordinate on the

monetary steady state outcome rather than a period two or higher order cycle. As the data

in the table found in the appendix reveal, coordination on the steady state outcome tends

to increase for values of P2 > 13. When the system converged to the monetary steady state,

the number of iterations to convergence was generally less than when the system converged

to a period two equilibrium.

Figures 4abcd illustrate further the character of our results by examining time series from

experiments which converged or nearly converged. Figure 4a is typical of all of our 1,410

experiments, as we observed outcomes similar to this one at virtually all values of P2’ In the

figure, real balances per capita is plotted on the vertical axis. We recorded real balances per

capita for each iteration of each experiment, as it provides a summary of the agents’ savings

behavior at each point in time. However, it is important to note that only in a stationary

equilibrium, possibly periodic, when all agents within a generation are saving the same

amount, does the amount of real balances per capita accurately represent all individual

behavior in the economy. Figure 4a illustrates a case of fairly rapid convergence, with the

monetary steady state obtaining to within our convergence tolerance in 51 iterations.

Figure 4b is representative of another common outcome in our computational experi-

ments. In this case, real balances per capita moves to within a small neighborhood of a

period two equilibrium within 100 iterations, but then the system takes another 250 iter-

ations before converging at iteration 353. This latter result was typical, as it took a long

time for our systems to lock on to period two equilibria. One consequence of the fact that

the system remains in the neighborhood of the period two equilibrium for such a long time

is that beliefs continue to evolve long past the point where the system initially enters the

neighborhood of the equilibrium. This is illustrated in Figure 4c, which plots the time series

of the mean position number (the mean base ten value of all of the strings in the system) for

the same experiment depicted in Figure 4b. The mean position number can range between

zero and 255, and in the figure the position number initially falls rapidly and converges to
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one, which is a string consistent with a period two equilibrium.30 Of course, many other

strings are also consistent with a period two equilibrium (in particular, any odd string), and

when the system still has not converged according to our criterion at iteration 150, some

agents begin to experiment with some of these alternative strings. Subsequently, the mean

position number rises until it reaches a relatively high level by the time of convergence.31

A portion of the time series graph for an exceptional case is presented in Figure 4d.

This time series was generated in a single replication of a computational experiment with

P2 = 7.5. In this case, the agents in the economy nearly coordinated on a stationary

equilibrium of period four although again our convergence criterion was not quite met in

this case at iteration 2,000. The system depicted in the figure moved to a neighborhood

of a period two equilibrium by iteration 440, but all agents had coordinated on the string

00000011 which has base ten value 3 and is consistent with both a period four and a period

two equilibrium. We observed dynamics qualitatively similar to those in the first portion of

Figure 4d in a number of other experiments, but in those cases the period four equilibrium

broke down during the volatile period which occurs around iteration 700 in Figure 4d.

The fixed points of the period four equilibrium correspond precisely to those of the cycle

predicted by the limiting backward perfect foresight dynamics (compare the fixed points of

Figure 4d with the limiting backward perfect foresight dynamics in Figure 1 at p2 = 7.5).

This case illustrates that a third type of equilibrium, a period four cycle, is possible despite

being rarely observed.

Figures Sabcd illustrate situations of more complicated dynamics. Figure 5a and Figure

Sb display the full time series for the two exceptional cases where no convergence or nearcon-

vergence was observed after 2,000 iterations.32 As the time series reveals, the agents never

come close to coordinating on any path for real money balances that discernibly resembles

a steady state or periodic equilibrium.33 Nevertheless, the observed nonconvergence of the

30The standard deviation of the position number fell to zero between iterations 80 and 150, indicating
that all the strings were identical over this period. Nevertheless, the differences in price realizations must
not have been small enough to satisfy the convergence criterion.

31We did not observe continuing evolution of beliefs in cases where the system converged to the monetary
steady state. In most instances, the agents simply coordinated on the zero string, 00000000, in these cases.
In some cases the system tracked a damped oscillatory path to the steady state, with all agents coordinated
on the string 00000001 or occasionally on a string with a higher position number.

32
1II these figures, lines connecting adjacent observations have been omitted in order to reduce clutter.

331n Figure 5a, the dynamics are bounded by the fixed points of the period two equilibrium which is the
attractor under backward perfect foresight for p2 = 4.7.
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system after 2,000 iterations does not imply that the system would not eventually converge.

Our experience leads us to believe that the system would eventually have converged to

some type of equilibrium if it had been allowed to run for more than 2,000 iterations, but

of course the question remains open.

A much more common outcome was one of complicated transient dynamics within ex-

periments that did eventually converge or that nearly converged. Figure 5c provides a

portion of the time series from one experiment. In this diagram, the mean position num-

ber is plotted above the box marking the level of mean real balances for cases where the

standard deviation of the position number is zero (indicating that all agents have coordi-

nated on a single string).34 From iteration 175 through 350, a favored string is evidently

00011010. This string is consistent only with a periodic equilibrium of order 23 and this

equilibrium has not yet occurred in the Feigenbaum cascade depicted in Figure 1. The

result is a near—periodic time series which continues for more than 500 iterations. Figure 5d

illustrates how a sharp qualitative change in dynamics can occur. In this experiment, the

level of real balances per capita has been fluctuating without approaching an equilibrium for

more than 800 iterations. A favored string is 01011110. Around iteration 960, the system

dynamics change abruptly and the system approaches the steady state before converging to

a period 2 equilibrium. A precise assessment of ‘complicated transitory dynamics’ requires

further quantification, but we think we can convey the nature of our results by stating that

dynamics qualitatively like those in Figures Sc and 5d were commonplace in our experi-

ments, but never occurred for values of P2 < 4.2. We conclude that existence of periodic

equilibria is necessary but not sufficient for complicated transient dynamics in our systems

with learning.

5 Conclusion

We have studied learning in a model where there can be an extensive multiplicity of sta-

tionary equilibria, many of which are periodic. It is often thought that introducing learning

into such a model might help with the pervasive multiplicity problem because some of the

34We note again that a standard deviation of zero does not imply that our convergence criterion has been
satisfied; recall that we also require the differences in price realizations must be less than the prescribed
tolerance.
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equilibria might not be attractors under learning and hence might not be viewed as likely

long—run outcomes in an actual economy or economic situation driven by human behavior.

In this paper, we have provided some evidence in favor of this notion, as introducing the

criterion that equilibria should be ‘learnable’ does lead to a sharp reduction in the set of

stationary equilibria one would view as plausible in our systems. However, we are unable

to rule out convergence to periodic equilibria entirely, and our systems sometimes display

qualitatively complicated transitory dynamics for long periods of time.

Experiments with human subjects might provide some further clarification of which

equilibria are more likely to emerge in environments like this one. However, as noted in the

introduction, genetic learning like that employed here has already been shown to be quite

successful in mimicking the behavior of human subjects in controlled laboratory settings,

and our results are consistent with the experimental work to date on this topic. Since

experiments with human subjects are not presently feasible on the scale contemplated in this

paper, we think our computational approach provides a reliable and practical alternative.
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A Data from computational experiments

In this appendix we present asummary of the raw data from our computational experiments.

The first column in the table lists the value of p~,while the second column lists the number of

experiments run at that value of P2. The third colunm gives the mean number of iterations

to convergence for those experiments which produced convergence at the given value of

P2, and the fourth column gives the standard deviation. The last three columns give the

number of experiments that converged to a steady state (k = 0), a stationary equilibrium

of period 2 (k = 1), and failed to converge in 2,000 iterations (nc). As discussed in the text,

we regard all but three of these non—convergent (nc) cases as instances of near convergence

to a cycle ofperiod 2. Of the remaining three nc cases, one was nearly convergent to a cycle

of period 4, and the other two cases showed no clear pattern at the end of 2,000 iterations.
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P2
2.0

Replications
10

Mean
35.6

Std. Dev.
7.7

k = 0
10

k = 1
0

nc
0

2.1 10 36.9 7.2 10 0 0
2.2 10 28.4 5.1 10 0 0
~3 10 32.0 7.4 10 0 0
2.4 10 31.9 6.4 10 0 0
2.5 10 32.0 6.0 10 0 0
2.6 10 31.0 5.4 10 0 0
2.7 10 33.7 8.6 10 0 0
2.8 10 29.5 4.5 10 0 0
2.9 10 32.8 8.7 10 0 0
3.0 10 50.9 45.3 10 0 0
3.1 10 51.2 35.1 10 0 0
3.2 10 53.6 41.0 10 0 0
3.3 10 45.0 42.2 10 0 0
3.4 10 57.0 57.0 10 0 0
3.5 10 67.1 64.5 10 0 0
3.6 10 158.4 118.6 10 0 0
3.7 10 140.1 274.6 10 0 0
3.8 10 73.3 113.9 10 0 0
3.9 10 195.4 162.4 10 0 0
4.0 10 149.6 236.9 10 0 0
4.1 10 499.8 556.1 10 0 0
4.2 10 34.1 4.9 7 0 3
4.3 10 187.6 313.1 8 2 0
4.4 10 292.2 263.6 5 5 0
4.5 10 181.7 186.4 6 4 0
4.6 10 146.0 171.0 7 3 0
4.7 10 214.4 391.9 7 2 1
4.8 10 219.6 291.5 9 1 0
4.9 10 38.4 11.7 10 0 0
5.0 10 137.4 165.2 7 3 0
5.1 10 271.0 417.7 8 2 0
5.2 10 91.8 120.1 8 2 0
5.3 10 263.9 389.7 7 3 0
5.4 10 237.9 240.4 5 5 0
5.5 10 155.7 165.9 6 4 0
5.6 10 189.0 180.7 6 4 0
5.7 10 296.3 370.7 7 3 0
5.8 10 247.6 317.1 7 3 0
5.9 10 219.5 191.7 4 6 0
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p2 Replications Mean Std. Dev. k =0 k = 1 nc
6.0 10 265.2 368.5 5 5 0
6.1 10 126.0 171.5 7 3 0
6.2 10 373.4 387.4 5 5 0
6.3 10 72.5 104.0 9 1 0
6.4 10 246.4 309.4 5 5 0
6.5 10 126.3 196.8 7 3 0
6.6 10 194.4 252.5 6 4 0
6.7 10 145.7 175.9 7 3 0
6.8 10 135.5 190.1 8 2 0
6.9 10 159.0 248.1 8 2 0
7.0 10 481.4 269.2 2 8 0
7.1 10 442.8 367.2 4 6 0
7.2 10 253.3 280.4 6 4 0

-~:~a- 10 37.5 11.1 10 0 0
7.4 10 359.1 395.4 6 4 0
7.5 10 341.6 403.2 6 3 1
7.6 10 550.6 613.7 7 3 0
7.7 10 174.9 282.6 8 2 0
7.8 10 526.1 452.9 4 6 0
7.9 10 561.5 445.3 4 6 0
8.0 10 232.7 325.6 8 2 0
8.1 10 209.3 352.8 9 1 0
8.2 10 482.0 553.6 7 3 0
8.3 10 531.2 413.1 4 6 0
8.4 10 294.8 394.1 8 2 0
8.5 10 451.2 499.5 6 4 0
8.6 10 638.8 499.8 4 6 0
8.7 10 678.3 527.1 4 6 0
8.8 10 445.4 553.5 6 4 0
8.9 10 200.4 272.2 8 2 0
9.0 10 628.5 520.1 5 5 0
9.1 10 458.2 520.6 7 3 0
9.2 10 624.1 695.8 6 4 0
9.3 10 889.8 582.8 3 6 1
9.4 10 165.1 348.0 9 1 0
9.5 10 568.1 691.7 6 4 0
9.6 10 916.5 372.6 2 8 0
9.7 10 661.5 781.0 6 4 0
9.8 10 808.3 726.0 5 4 1
9.9 10 647.3 629.4 S 5 0
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P2 Replications Mean Std. Dev. k 0 k 1 nc
010.0 10 409.5 509.0 7 3

10.1 10 69.7 100.1 10 0 0
10.2 10 548.8 600.7 5 4 1

10.3 10 751.4 679.8 6 4 0

10.4 10 728.9 671.4 4 4 2

10.5 10 683.1 730.4 5 4 1

10.6 10 629.4 680.9 5 4 1

10.7 10 911.1 757.8 4 5 1

10.8 10 687.8 664.9 5 4 1

10.9 10 520.1 551.6 7 3 0

11.0 10 627.0 817.5 6 3 1
11.1 10 1097.7 727.7 3 7 0
11.2 10 305.6 429.9 7 1 2

11.3 10 1132.9 758.9 3 6 1
11.4 10 1078.7 686.2 3 6 1

11.5 10 940.6 771.6 4 5 1

11.6 10 507.7 738.8 5 2 3
11.7 10 1030.9 814.1 4 6 0

11.8 10 926.6 788.4 4 5 1
11.9 10 635.2 804.5 7 3 0
12.0 10 824.9 843.4 5 4 1

12.1 10 312.5 562.2 5 1 4

12.2 10 190.1 402.5 9 1 0
12.3 10 108.0 74.3 3 0 7

12.4 10 588.9 813.9 S 2 3

12.5 10 785.3 842.8 4 3 3
12.6 10 81.9 66.7 8 0 2
12.7 10 918.0 817.6 4 4 2
12.8 10 53.4 16.3 5 0 5
12.9 10 528.6 724.8 6 2 2

13.0 10 311.7 518.4 8 1 1

13.1 10 322.3 587.0 8 1 1
13.2 10 251.7 540.3 8 1 1

13.3 10 50.6 10.6 8 0 2

13.4 10 228.0 519.5 8 1 1
13.5 10 249.4 569.6 8 1 1
13.6 10 296.8 597.2 7 1 2
13.7 10 234.9 681.9 9 1 0
13.8 10 224.0 491.8 7 1 2
13.9 10 198.9 288.7 9 0 1
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P2 Replications Mean Std. Dev. k = 0 k = 1 nc
14.0 10 43.0 11.2 9 0 1

14.1 10 78.1 68.9 9 0 1

14.2 10 85.0 105.4 8 0 2

14.3 10 93.1 97.7 9 0 1

14.4 10 119.0 194.2 8 0 2

14.5 10 45.1 23.5 8 0 2

14.6 10 131.9 238.7 9 0 1

14.7 10 44.9 13.1 8 0 2

14.8 10 47.7 26.4 9 0 1

14.9 10 147.3 287.4 9 0 1

15.0 10 59.3 38.8 9 0 1

15.1 10 73.4 57.4 9 0 1

15.2 10 189.4 307.4 9 0 1

15.3 10 46.7 12.7 9 0 1

15.4 10 100.4 132.4 9 0 1

15.5 10 77.9 71.5 8 0 2
15.6 10 316.7 654.3 6 1 3
15.7 10 63.2 17.9 5 0 5

15.8 10 112.3 173.8 9 0 1
15.9 10 42.0 11.6 6 0 4
16.0 10 178.1 332.8 7 0 3
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Figure 1
Bifurcation diagram, backward perfect foresight dynamics
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Limiting learning dynamics

2 3 4 5 6 7 8 9 10 11 12

Relative risk aversion, old agents

o Observed after convergence or 2000 iterations

0
0 0

0

£
0

0

I I I ~ _~_~_~I_~ I ~ I ~ ~ I I I I

13 14 15 16 17

Ten replications ateach old agent relative risk aversion.
Convergence values or last 50 Iterations of each replication plotted.



Figure 3
Mean Number of Iterations to Convergence
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Figure 4a
Example of convergence to the monetary steady state
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Figure 4b
Example of convergence a periodic equilibrium of order 2
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Figure 4c
Evolution of beliefs during convergence to a periodic equilibrium of order 2
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Figure4d
Near convergenc~to a periodic equilibrium of order 4
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Figure 5a
Failure to converge
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Relative risk aversion of the old agents is 4.7, computational experiment 4)



Figure 5b
Failure to converge
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Complicated transitory dynamics
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