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USING GENETIC ALGORITHMS TO MODEL THE EVOLUTION OF
HETEROGENEOUS BELIEFS

ABSTRACT

Genetic algorithms have been used by economists to model the process by which a population of

heterogeneous agents learn how to optimize a given objective. However, most general

equilibrium models in use today presume that agents already know how to optimize. If agents

face any uncertainty, it is typically with regard to their expectations about the future. In this

paper, we show how a genetic algorithm can be used to model the process by which a population

of agents with heterogeneous beliefs learns how to form rational expectation forecasts. We retain

the assumption that agents optimally solve their maximization problem at each date given their

beliefs at each date. Agents initially lack the ability to form rational expectations forecasts and

have, instead, heterogeneous beliefs about the future. Using a genetic algorithm to model the

evolution of these beliefs, we find that our population of artificial adaptive agents eventually

coordinates their beliefs so as to achieve a rational expectations equilibrium of the model. We

also report the results of a number of computational experiments that were performed using our

genetic algorithm model.
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I. Introduction

The rational expectations assumption has become a standard feature of general equi-

librium economic theorizing. Many economists argue that while such an assumption may

seem extreme, it can be justified as the eventual outcome of a (usually unspecified) learning

process. This argument has led many to theorize as to how such a learning process might

work and whether systems with expectations so defined would actually converge to a ratio-

nal expectations equilibrium. Some authors have begun to investigate general equilibrium

learning models based on genetic algorithms, with largely promising results.’

In this paper we illustrate that the modelling of such learning processes using genetic

algorithms can be carried out in two different ways. In the first method, agents are viewed

as learning how to optimize in the sense that they experiment with different values of their

choice variable based on which values worked well for other agents in the past. All of the

general equilibrium applications of genetic algorithms of which we are aware use this first

method. In the second method, agents are viewed as learning how to forecast, meaning

that they select a value for their forecast variable based on which values worked well in the

past, and then solve a maximization problem to find the value of their choice variable given

their forecast.2 With this second method, the assumption that agents maximize utility is

maintained. In this paper we provide an example of the second method and discuss its

strengths and weaknesses.

In order to define an evolutionary approach to an individual agents’ problem in the

general equilibrium—homogeneous preferences environment that we consider, it is necessary

both to define how the agent views the future and how the agent chooses a value of the choice
1See, for example, Arifovic (1992, 1994) and Bullard and Duffy (1993, 1994). See also the discussion in

Sargent (1993). For an introduction to genetic algorithms see the book by Goldberg (1989).
2See Marimon and Sunder (1994) for a discussion of the same distinction between learning how to optimize

and learning how to forecast in the context of setting up overlapping generations experiments with human
subjects.
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variable. In the learning how to optimize implementation of genetic algorithm learning, one

assumes (implicitly or explicitly) that all agents have the same view of the future, and

that the genetic algorithm is used to assign agents a value of the choice variable given

the set of commonly held expectations. Clearly, if all the agents optimized a common

objective given these common expectations, all agents would make the same decision and

the heterogeneity on which the genetic algorithm depends would be lost.3 Rather than

optimize, the agents simply choose values of the choice variable according to the genetic

algorithm assignment. This method has been successfully applied in several recent papers.

In this case, however, the researcher is weakening both the assumption that agents have

rational expectations (expectations are updated adaptively, since rational expectations are

not well defined) as well as the assumption that agents optimize given their expectations.

Nevertheless, once equilibrium is attained, beliefs and actions of all agents are consistent

with rational expectations and utility maximization.

In applying genetic algorithms to learning problems, many economists might want to

relax the rational expectations assumption without relaxing the optimization postulate.

One reason for adopting such an approach is that model economies where both assump-

tions hold tend to have multiple equilibria. It is not clear what an individual agent with

rational expectations should believe since there are multiple outcomes that are consistent

with equilibrium, and which one is “right” depends on what all the other agents believe.

Achieving one of these equilibria requires a certain coordination of beliefs among all of the

agents in the population.

In the example of genetic algorithm learning that we present in this paper, agents

are viewed as learning how to forecast. Agents initially have heterogeneous views of the

future which they use to individually solve their common maximization problem. The
31n most learning models in a macroeconomic context, including many with least squares learning, there

is, in effect, a representative agent who maximizes given expectations, and the expectations are updated
according to some fixed adaptive rule.
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genetic algorithm is used only to update beliefs. Thus, in the example we develop, the only

departure from standard assumptions is that agents initially have heterogeneous beliefs

which they eventually learn to coordinate in order to achieve an equilibrium outcome. We

believe that this exercise is an especially useful application of genetic algorithm learning, as

it is applied to an area of economic modelling for which economists have the least knowledge:

the formation and evolution of expectations. The fact that expectations are easily modeled

and updated using a genetic algorithm is interesting in itself. Our example also helps

illustrate the fact that genetic algorithms provide us with an extremely flexible tool that

can be used in many different ways.

The model we use is a two—period endowment overlapping generations economy with

fiat money. We outline the model in the next section. In section three we describe the

model under learning, and in section four we show how to apply a genetic algorithm in a

manner consistent with utility maximization. The final sections display the results of some

computational experiments and provide a summary of the main points.

II. The Model

Time t is discrete with integer t E (—co, oo). Agents live for two periods and seek to

maximize utility over this two period horizon. The population of agents alive at any date

t is fixed at 2 x N where N is the number of agents in each generation. There is a single

perishable consumption good and a fixed supply of fiat money. Agents are endowed with

an amount w1 of the consumption good in the first period of life, and an amount W2 of the

consumption good in the second period of life, where W
1

> W
2

> 0. In the first period of

life, agents may choose to simply consume their endowments, or they may choose to save

a portion of their first period endowment in order to augment consumption in the second

period of life. Since the consumption good is perishable, agents in this economy can save

only by trading a portion of their consumption good for fiat money. In the second period
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of life, they can use any fiat money they acquired in the first period to purchase amounts

of the consumption good in excess of their second period endowment.

A representative agent born at time t solves the following problem:

max U=1nc~(t)+lnc~(t+l)c~(t),ct(t+1)

subject to:

ct(t) + ct÷,(t+ l)f3(t) <w~+ w2j3(t).

where ct(t + i), i = 0, 1 denotes consumption by the agent born at time t in period t + i

and j3(t) denotes the time t forecast of the gross inflation factor between dates t and i + 1:

F[P(t + 1)J = ~3(t)P(t)

where P(t) denotes the time t price of the consumption good in terms of fiat money, and

F{P(t + 1)] is the time t forecast of the price of the consumption good at time t + 1. This

forecast can be formed in any number of ways. For the moment, we consider the case where

all agents have perfect foresight, in which case F[P(t+ 1)] = P(t+ 1), so that ~3(t)=

Combining the first order conditions with the budget constraint, one obtains:

ct(t)= ~[A+~3(t)],

where A = w,/w2. It follows that the representative agent’s savings decision at time t is

given by:

s~(t)=wi -ct(t) = ~[A-~(t)}. (1)

Fiat money is introduced into the economy by a government that endures forever. The

government prints fiat money at each date t in the amount M(t) per capita. It uses this

money to purchase g units per capita of the consumption good in every period:

P(t)g = A’I(t) — M(t — 1). (2)
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It is assumed that government consumption does not yield agents any additional utility.

Since agents can save only by holding fiat money, the money market clearing condition

is that aggregate savings, Nst(t), equals the aggregate stock of real money balances

at every date t, or more simply that

St(t) = ~. (3)

By Walras’ law, market clearing in the money market implies market clearing in the con-

sumption good market as well. Substituting equations (1—2) into (3) and rearranging, we

obtain a first order difference equation in /3(t):

/3(t) =1+ A - - /3(t- 1) (4)

Equation (4) has two stationary equilibrium solutions, given by

1+A_~±~(l+A_2~)2_4A
“‘2

2

where ~8”denotes the higher of the two stationary values and ,8’~denotes the lower sta-

tionary value. These two solutions will be real valued if government purchases of the

consumption good are not too great. In particular, we require that

o<g<~[1+A_2v~]. (5)

It is easily established that the Pareto superior steady state is the low inflation steady state,

,
3

L Under the assumption of perfect foresight this solution is locally unstable. The other

steady state, /
3

H, is locally stable in the perfect foresight dynamics, and is an attractor for

all initial values of the gross inflation factor /3(0) E (/
3
L, A).4

The two stationary equilibria are shown in Figure 1, which depicts the qualitative graph

of equation (4) for a particular case that will be studied later in the paper. As government

4For an analysis of the dynamics of the model under perfect foresight see Sargent and Wallace (1981).
For an analysis of the dynamics under a least squares learning scheme see Marcet and Sargent (1989).
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expenditures per capita (g) increases, the curve representing equation (4) shifts downward

and the two stationary equilibria, 13L and
13

H move closer together. Thus, an increase in

government purchases leads to an increase in the value of the low stationary inflation factor

/3L, and a decrease in the value of the high stationary inflation factor, /311.

IlL Learning

The assumption that agents have perfect foresight is useful for understanding the dy-

namics of the model when agents know the model. We now relax the assumption that

agents have perfect foresight knowledge of future prices. We assume instead that nil N

agents forecast future prices using the linear model:

F~{P(t+ 1)] = b~(t)P(t), (6)

where b~(t)denotes the parameter that agent i = 1,2, ..., N of generation t uses to forecast

next period’s price. While all N agents use the same specification (6) for their forecast rule,

each agent may have a different belief regarding the appropriate value for the unknown

parameter b. We further restrict agent’s beliefs regarding the parameter b to fall in the

interval:

0 < b1(t) < A for all i, t.

The lower bound ensures that price forecasts are always positive. The upper bound of

A represents the highest inflation factor that agents would need to forecast and still be

consistent with equilibrium. Inflation factors above A would imply that agents always

consumed their endowments as the equation for individual savings (1) makes clear.

Each agent uses their forecast from equation (6) to solve the constrained maximization

problem given in the previous section. The more accurate the agent’s forecast, the higher

is the agent’s utility. Therefore, it is in the agent’s interest to approximate the “true” value

of the unknown parameter b as closely as possible. Of course, while agents are learning,
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this “true” value for the gross inflation factor will depend on all agents’ beliefs, and will

therefore be time—varying.

We stress that the specification for the agent’s forecast rule (6) is consistent with the

actual law of motion for prices when agents have perfect foresight. The consistency of

the agent’s forecast rule with the actual law of motion enables us to examine whether or

not agents can learn the true model. Agents will have coordinated beliefs or, alternatively,

will have converged upon a stationary equilibrium if b,(t) = b2(t) = ... = bN(t) = /3(t) =

P(t + 1)/P(t), that is, if all agents have identical forecast rules, and their forecasts are

always correct.

IV. The Evolution of Beliefs

We now apply a genetic algorithm in order to describe how the parameter b~(t)evolves

over time. We first describe how beliefs are coded in a binary string, and then we illustrate

how genetic operators are used to update the beliefs.

A. Coding of beliefs

At every moment in time t, there are two generations of N agents alive in the population.

The first generation is the current “young” generation—agents in the first period of life,

while the second generation is the current “old” population—agents in the second period

of life. Each member of each generation may initially have a different belief about the

parameter b. Their beliefs as to the true value of this parameter are encoded in a bit

string of finite length £. In the first period, t = 1, N 1—bit strings are chosen randomly

for each generation. These bit strings are sufficient to completely characterize each agent’s

consumption and savings behavior as we shall now demonstrate.

Let the bit string for agent i be given by:

< a~,(t),a~2(t),..., aj,~(t)> where a~~(t)E {0, l}
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The agent’s bit string can be decoded to a base 10 integer using the formula:

d~(t)= ~ a~(t) 2L~~

To calculate agent i’s parameter estimate, b~(t),we take the value of d~(t) and divide it

by the maximum possible decoded value: dma~= , ~ The result is a value in the

interval [0, 1]. This fraction is then multiplied by the maximum gross inflation factor that

the agent would need to forecast, consistent with equilibrium, which is given by the value of

the parameter A. Hence, each agent’s value for b~(t)is determined according to the formula:

b~(t)= d1(t) A

dma~

Once a value for b1(t) is determined, the agent uses this value to forecast next period’s

price P(t + 1). With this forecast the model is closed and the agent is able to solve the

maximization problem. The algorithm that we developed for this paper actually solves this

constrained maximization problem for each agent, given the agent’s parameter estimate for

b. Thus agents have no difficulty in our framework in solving a constrained maximization

problem. They are only uncertain as to the correct value of the parameter b. This uncer-

tainty can be viewed as arising naturally if we think of agents as initially uncertain about

the beliefs of the other agents. Initial uncertainty of this type might come about because,

even if all agents understand well the nature of their situation, they are not sure what to

believe since there are multiple beliefs which are consistent with equilibrium; which of these

is correct depends on the beliefs of all of the other agents.

B. Genetic updating of beliefs

Agents of generation t form forecasts of future prices only in period t, when they are

members of the “young” generation. The actual inflation factor between dates t and t + 1

is determined according to equation (4), and will not be revealed to members of generation

t until these agents are in the second period of their lives, that is, when they are members
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of the “old” generation. Thus, the success or failure of a particular forecast cannot be

immediately ascertained.

The genetic updating of beliefs proceeds as follows. The first step is to calculate ag-

gregate savings by the young generation born at time t. This is done by solving each

young agent’s maximization problem, conditional on that agent’s belief, and obtaining an

individual savings amount s~~(t).Aggregate savings is then given by:

N

S(t) =

Using this value for aggregate savings in equation (2), and using equation (3) to substitute

out for real money balances, we have that the new, realized inflation factor /3(t — 1) is given

by:

~ — P(t) — S(t—l)
- )~P(t-1) - S(t)-Ng

The value of 18(t — 1) depends on aggregate savings at time t and at time t — 1, as well as

on the value of per capita government purchases, g. Once /3(t — 1) is known, it is possible

to evaluate the forecasts made by generation t — 1. Alternatively, one can now calculate the

actual lifetime utility achieved by each member of generation t — 1. These lifetime utility

values will be used in the first step of the genetic algorithm.

The genetic algorithm is used to model how the next generation’s beliefs evolve. The first

step in the genetic algorithm is reproduction. Here we use a simple tournament selection

method. Two members of the old generation are selected at random and their lifetime

utility values are compared. Comparison of lifetime utility values is equivalent to assessing

how close each of these two agents came to correctly forecasting actual inflation, since the

two agent’s forecasts were used to solve the same utility maximization problem. The old

agent with the highest lifetime utility value (closest forecast) is copied and placed in the

population of “newborn” agents. This tournament selection process is repeated N times,

where N is the (constant) size of each generation. We stress that it is forecasts that are
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being copied. These forecasts have been shown to be relatively more successful than other

forecasts made by members of generation t — 1.

The next steps in the genetic algorithm are the crossover and mutation operators. In

addition to these two standard operators, we have added an elitist selection operator that

we will refer to as the election operator following Arifovic (1992). We view all three of these

operators as describing a process by which the “newborn” generation (the product of the

reproduction operator) experiments with “alternative forecasts” before deciding upon the

forecast they will actually use when born into next period’s young generation.

These “alternative forecasts” are created through the crossover and mutation operators.

Crossover is applied to all strings in the newborn population with probability pC. Strings

are paired randomly. We use single—point crossover, choosing a point at random in both bit

strings, cutting the strings at that point, and swapping all bits to the right of that point.

Mutation is applied to each bit in each newborn string with probability ptm: bit a~(t)is

changed to equal 1 — a~~(t)with probability ptm.

Once crossover and mutation has been performed on the N newborn strings, the new-

borns must decide whether they want to adopt any of these alternative forecasts as their

own. Therefore, the alternative forecasts are evaluated as to how they would have per-

formed. These forecasts are decoded to obtain an inflation forecast, and the utility max-

imization problem is then solved, given this forecast. Utility is then evaluated using the

most recent actual inflation rate ~3(t—1), and a lifetime (expected) utility value is calculated

for each alternative forecast.

Once the lifetime expected utility associated with the alternative forecast is calculated,

the election operator determines how newborn agents choose between the string they have

inherited and the alternative string they have “created.” Newborn agents are matched

pairwise with their associated alternatives. The election operator then chooses the two
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forecasts that yielded the highest lifetime utility from among the two newborns and the two

alternatives. The two “winners” become members of the newborn generation; the “losers”

are discarded. The election operator is applied N/2 times so as to obtain a newborn

generation of N agents.5

Once the strings of the newborn generation have been chosen, time changes to the next

period, t + 1, and the population of agents is aged appropriately. Agents who were born at

time t— 1, and who were members of the old generation at time t, cease to exist. Agents who

were born at time t and who were members of the young generation at time t now become

members of the old generation. The newborn generation is the new young generation “born”

at time t. The process described in this section is then repeated again, with a new value

calculated for aggregate savings, S(t + 1).

As a matter of interpretation, we stress that we do not need to think of the model as

sets of agents actually passing genetic information via a biological process. Instead, we

might view new agents coming into the model as new entrants to the workforce. They

communicate with other agents concerning possible forecasts for future inflation, and take

actions based on the forecast they adopt. Thus, agents can be viewed as exchanging ideas

about the best way to forecast the future. The reproduction operator ensures that the better

ideas from the older generation are adopted by the younger generation. The crossover and

mutation operators allow the agents to experiment with alternative forecasts. And the

election operator ensures that agents are not forced to adopt any “bad ideas.”

Our genetic algorithm learning system generates a sequence of gross inflation rates, a

sequence of N-string generations, and a sequence of sets of N forecast errors. We allow the

system to evolve until the following convergence criteria are met. First, we required that

inflation is at a steady state level predicted by the model under perfect foresight; second,
5The election operator is properly viewed as an elitist selection operator. Some type of elitist selection is

necessary to ensure that the genetic algorithm converges asymptotically to the global optimum, See Rudolph
(1994).
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all strings within the most recent generation must be identical; and third, the most recent

two sets of forecast errors must all be equal to zero up to a predefined tolerance. If these

criteria were not met after 1,000 iterations, the process was terminated.

V. Parameterization and Results

We now discuss the parameterizations and results of a number of simulations that we

conducted using our genetic algorithm model of the evolution of beliefs. We begin with

parameter values relating to the genetic algorithm aspect of the model. In all of our simula-

tions, we chose to set a high rate of crossover, pC = 1, and a relatively low rate of mutation,

ptm = .033. The high probability of crossover is possible because of the election operator:

if agents are allowed to discard ‘bad ideas,’ there is no harm in experimenting extensively.

We chose to consider populations of two different sizes, N = 30 and N = 60. These param-

eter values all fall within the ranges recommended in the genetic algorithm literature.6 In

addition, we chose two different values for the length of the agent’s bit string: £ = 4, and

£ = 8. When £ = 4, agents choose from among 2~— 1 or 15 different parameter values for

b. When £ = 8, a similar calculation reveals that agents choose from among 255 different

parameter values for b.

We also had to chose values for a number of parameters relating to the overlapping

generations economy. We chose to use the same endowment amounts in all simulations:

= 4 and w2 = 1. We considered two different values for per capita government purchases,

g = .3333, and g = .45. The principle advantage to considering two different levels for g is

that the two steady state equilibria are moved closer together as g increases. In particular,

when g = .3333, the two stationary values for inflation are /
3
L = 1.3333 and /311 = 3. When

g is increased to .45, these two values change to /3~~= 1.6 and ~ = 2.5.

Our main result is that, in all of the computational experiments that we conducted, the
6See, for instance, Grefenstette (1986) or Goldberg (1989).
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algorithm converged upon the low inflation stationary equilibrium, 13L~We now report the

results of a few experiments that we performed to determine the role played by the different

parameter values discussed above.

A. Experiment 1

In this experiment, we fixed the size of each generation at N = 30, and varied the length

of agents’ bit strings between £ = 4 and 1 = 8. When £ = 4, the population of 30 agents

considers just 15 different values for b, so the ratio of different possible beliefs to agents is .5.

When £ = 8, the population of 30 agents considers 255 different values for b and the ratio

of different possible beliefs to agents is 17 times higher, at 8.5. This experiment is intended

to determine whether the degree of heterogeneity is a factor in the speed with which the

algorithm converges to the low stationary inflation value. The results are reported in the

first column of Table 1, which presents the mean and standard deviation of the number of

iterations to convergence from 100 computational experiments for each parameterization.

As the table reveals, increasing the heterogeneity of beliefs by lengthening the bit string

from 4 to 8 led to an increase in the mean number of iterations it took the algorithm to

converge, as well as an increase in the standard deviation. We conclude that the increase in

the number of inflation forecasts that agents might consider made it more difficult for these

agents to coordinate on a single forecast corresponding to /31~~.Figure 2 depicts the inflation

forecasts of the 30 agents at each iteration from a typical computational experiment in the

case where £ = 8. As the figure reveals, the agents quickly coordinate in a neighborhood of

the low inflation stationary equilibrium,
13

L = 1.333; however it takes agents a long time to

actually reach consensus on the same inflation forecast value.
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Table 1: Convergence Results for Different GA Parameterizations

Length of
bit string

Number of
b~(t)values

N
Mean

= 30
Std. Dev.

N = 60
Mean Std. Dev.

4 15 1 11.24 3.47 10.43 1.46
8 255 50.49 54.96 3 22.39 7.84

Table 2: Convergence Results for Different Values of g

Length of Number of g = .333 g = .45

bit string b~(t)values Mean Std. Dev. Mean Std. Dev.
4 15 11.24 3.47 13.19 7.90

B. Experiment 2

In a second experiment, we repeated Experiment 1, but increased the size of each gen-

eration from N = 30 to N = 60. The results are reported in the second column of Table

1. When N is increased to 60, the ratio of different possible forecasts to agents decreases,

and so it takes agents less time to find good forecasts—sampling by the population has

increased. Evidently, when £ = 4 and there are only 15 inflation forecasts, the increase in

the population size does not make much difference. However, when there are more pos-

sible forecasts than agents, as when £ = 8, an increase in the population size leads to a

considerable reduction in the mean number of iterations to convergence.

C. Experiment 3

In a final experiment, we returned to the situation where £ = 4 and N = 30 and exam-

ined the effect of increasing the size of government expenditures from g = .33 to g = .45.

This increase in g moves the two stationary equilibria closer together. The hypothesis we

sought to test was whether the algorithm would have greater difficulty coordinating on

the low inflation stationary equilibrium when it was closer to the high inflation stationary

equilibrium. The mean number of iterations to convergence from 100 computational exper-

14



iments for each value of g is reported in Table 2, which repeats some information found in

Table 1. The increase in g does lead to an increase in the mean number of iterations to

convergence as well as in the standard deviation, indicating that coordination is made more

difficult when equilibria are closer together.

VI. Summary

Economists have only recently begun to apply genetic algorithms to economic problems.

In this paper we have provided a simple illustration of an alternative implementation of the

genetic algorithm in an overlapping generations economy. In typical applications, agents

are viewed as learning how to optimize, while in our alternative implementation, agents are

viewed as learning how to forecast. The agents in our implementation optimize given their

bellefs, so that the researcher relaxes standard economic assumptions along only one di-

mension, proceeding from homogeneous to heterogeneous beliefs. Our implementation may

be viewed as especially useful for economists who wish to study problems of coordination

of beliefs.7

Our experimental findings are mainly illustrative. We found that agents can indeed

coordinate beliefs and learn the Pareto superior equilibrium of an overlapping generations

model. Our results are consistent with the much more extensive results of Arifovic (1992),

who used a learning how to optimize implementation of the genetic algorithm. However, our

learning how to forecast implementation of the genetic algorithm converges much faster to

the low stationary equilibrium value than does the learning how to optimize implementation

studied by Arifovic. The faster convergence obtained in our implementation may be due

to the fact that agents in our model optimize at every date, and only have to learn to

coordinate their initially heterogeneous beliefs. The faster convergence that we found in

our computational experiments is in fact consistent with results found in a series of two—
7For examples of genetic algorithm learning in other types of coordination problems, see Arifovic and

Eaton (1994) and Bullard and Duffy (1994).
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period overlapping generations experiments with human subjects conducted by Marimon

and Sunder (1994). These authors report that learning to make good forecasts “seems to

come faster” to their human subjects than does learning to solve a maximization problem.8

We also found that coordination was more difficult when the number of inflation values

considered by agents was higher, and when the two stationary equilibria of the model were

closer together.

8Marimon and Sunder (1994), p. 143.
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Figure 1: The Model Under Perfect Foresight
wl=4, w2=1, g=.333, Steady States 1.333 and 3.
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Figure 2: Inflation Forecasts of 30 Agents
Bit String Length = 8, Steady States = 1.333 and 3.
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