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ABSTRACT

This paper introduces a compound GARCH/markov switching model to add flexibility to the

GARCH model in order to model the volatilities of exchange rates in target zones subject to

realignments. The compound volatility model endogenizes the weights given to realignments

(and all other shocks) in the GARCH process. Previous GARCH applications to EMS exchange

rates took polar positions by arbitrarily placing full or zero weight on realignment shocks.

Markov switching in the student-t degrees-of-freedom parameter is shown to make the

difference between rejection and acceptance of goodness-of-fit tests for four of the six EMS

currencies studied.
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Introduction

The Exchange Rate Mechanism (ERM) of the European Monetary System (EMS) defines

fluctuation bands around central parities for each member’s exchange rate with the European

Currency Unit (Ecu). For most of its history, the ERM target zones have been narrow 2.5

percent banks. The bands were widened substantially to 15 percent for all but the ‘core’

countries in response to speculative attacks in September 1992 and August 1993. The

speculative attacks even forced Britain and Italy to suspend their participation in the ERM in

September 1992. The switch to wider banks responded to the belief that



narrow bands were making weaker currencies excessively vulilerable to speculation and,

paradoxically, increasing exchange-rate uncertainty.

This paper re-examines the complex volatility processes behind exchange rate target

zones subject to realignment. Summary statistics show that bilateral EMS exchange rate

have the most leptokurtic (fat-tailed) distributions among high-frequency financial data

[Vlaar and Palm (1993)]. We would expect the kurtosis, which is proportional to the

“variance of the variance,” to be high, as most changes in the exchange rate have to be

very small to stay within what have generally been narrow 2.5 percent fluctuation bands

in terms of an EMS currency relative to the European Currency Unit (Ecu), whereas

realignments and speculative attacks can bring much larger changes in the exchange rates.

This article presents a volatility model which blends the widely-used model of gen-

eralized autoregressive conditional heteroscedasticity (GARCH) with a markov switching

model. When applied to weekly EMS exchange rates, the compound volatility model per-

mits time-varying variances, skewness, and kurtosis. One difficulty in modeling the condi-

tional distributions of EMS exchange rates is that a realignment or even a large movement

within the band possibly represents a discontinuous shift in the distribution. Widely used

generalized autoregressive conditional heteroskedasticity (GARCH) models are not robust

to discontinuous shifts in volatility [Nelson (1990)]. On the other hand, Krugman’s (1991)

theoretical model suggests that, when it is near the center of the band, the exchange rate

should behave much like a free-floating rate in its reaction to news about fundamentals.
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Thus, at times it would be convenient to use a GARCH-type model to capture changes in

volatility, since GARCH models are believed to be adept at capturing changes in volatility

caused by variation in the rate of information arrival [Lamoureux and Lastrapes (1990)].

Furthermore, Nelson (1992) has shown that GARCH models still obtain consistent variance

estimates under certain types of misspecification, though not discontinuous shifts in the

distribution.

The compound GARCH/markov switching volatility model presented here can address

several features of EMS exchange rates. First, not all “jumps” in the level of the exchange

rate (not necessarily limited to realignments) are assumed to be of the same size. The

explained change in the level of the exchange rate can lie anywhere between an upper

and lower bound, making the size of any given jump endogenous. Second, the model,

unlike other models with a mean-variance relationship [Engel and Hakkio (1993)], does not

impose that all periods of high variance are also periods of high skewness. In the compound

variance process, the variance can be high due to large dispersion in the GARCH process,

without a switch in the markov process. This distinction will be made more concrete in

the next section where the model is presented. Third, the model follows much of the

GARCH literature by allowing the innovations to be student-t rather than normal, yet

differs from previous work by allowing the number of degrees of freedom in the student-

t innovations to change over time. Fourth, the weight placed on last period’s squared

residual in the GARCH process depends on the state of the markov process. Thus, the

model endogenizes the extent to which a realignment (or any lagged squared residual) is
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considered an innovation in the GARCH process. Previous models, in contrast, have taken

the polar positions that realignments either are or are not innovations to the GARCH

process.

Several previous applications of GARCII models to EMS exchange rates “dummy

out” the realignments to avoid mixing discontinuous changes in the distribution with the

GARCH process [Koedijk, Stork and De Vries (1992)]. Three problems with such a pro-

cedure are that not all realignments need be jumps; conversely, not all jumps need be re-

alignments — they may also occur within the band; and not all realignments have identical

impacts on the conditional variance in their aftermath. Another approach is the jump-

diffusion model of Jorion (1988), Nieuwland et al. (1991) and Vlaar and Palm (1993),

where in practice the conditional variance is increased each period by a constant amount

due to the possibility of discontinuous jumps in the exchange rate. Another distinction

between jump and markov processes is that the jumps occur independently across time,

whereas markov processes can be positively serially correlated. Given the well-known clus-

tering of volatile exchange-rate changes, a markov process is an attractive modeling device

to combine with the widely-used GARCH process.

The next section presents the GARCH/markov switching volatility model for EMS

exchange rates. The model is then applied to weekly data beginning in 1980 for EMS

exchange rates vis-à-vis the Deutsche mark. The exchange rate bands in the ERM are

formally defined in terms of a currency basket, the European Currency Unit or Ecu, but
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the Deutsche mark has never been devalued against the Ecu, nor has the D-mark’s target

value relative to the Ecu ever increased by less than another EMS currency relative to

the Ecu. The subsequent section presents results for six ERM exchange rates and the

Austrian schilling-Deutsche mark rate, since Austria has been a de facto EMS member by

maintaining a tight exchange rate band with the Deutsche mark.

II A GARCH/Markov switching volatility model

The volatility model assumes a student-t error distribution with nt degrees of freedom

in the dependent variable y:

= (1)

student-t(mean = 0, ~t, h~)

nt > 2

with error variance

= ~ (2)

The parameter nj is the degrees-of-freedom parameter and a standard student-t random

variable has variance equal to and kurtosis equal to 3(~-~-~).Thus, ~t can be called
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the “shape” parameter, because it defines the degree of leptokurtosis in the conditional

distribution. The distribution converges to the standard normal as the degrees-of-freedom

parameter approaches infinity. The time-varying parameter h~scales the variance of q for

a given value of the shape parameter ~t• We call h~the “dispersion” parameter, because it

scales the variance up and down without affecting the thickness of the tails or leptokurtic

shape of the conditional density. We then specify the three parameters of the conditional

density (~,h~,nt) as time-varying functions of one or more stochastic processes in order

to model how the conditional density might change over time. We differ from the existing

literature by not assuming that the conditional variance follows a GARCH process; instead

the dispersion parameter h~is assumed to follow a GARCH process. Note that if the shape

parameter ~t were constant, this distinction would be immaterial.

In order to permit discrete shifts in the conditional distribution, we model the condi-

tional mean, ~, and the shape parameter, ~t, as parameters subject to markov switching;

they are assumed to be functions of a discrete, unobserved state variable that follows a

first-order markov process:

itt = itlSt+ith(1—St) (3)

= niSt + flh(1 — S~) (4)

2 <flj <nh

S~e{0,1}

Prob.(St = 0 St_I = 0) = p
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Prob.(S~= 1 I St—i = 1) q

Equations (3) and (4) imply that the conditional mean, variance and kurtosis (provided

it exists, i.e., that ~t > 4) undergo discrete shifts when the state variable switches. We place

no prior restrictions on whether iti is greater or less than ith; ,ul is simply the conditional

mean associated with the low degree-of-freedom state (where nt = nd, and its value can be

greater than or less than the conditional mean associated with the high degree-of-freedom

state, ith• Nevertheless, if the low degree-of-freedom state were to correspond to periods

surrounding realignments, then we would expect that iti > ,ah, because realignments have

always meant that the foreign-currency price of one Deutsche mark increases. Moreover,

by tying the conditional mean to the same state variable as the conditional variance and

kurtosis, we can generate a skewed distribution for the dependent variable y, even if the

errors are symmetric.

The dispersion parameter, h~,is assumed to follow a GARCH(1,1) process with an

adjustment to account for the fact that the expected value of the squared residual is equal

to o~,not ht:

nt_i —= Y + ‘~t-i I + fih~_1 (5)
\ nt_i j

Since h~= o-~(n~), the lagged squared residual in the GARCH process is also down-

weighted by the factor (n~), which carries the interesting implication that the persis-

8



tence term in the GARCH process, a (~-~)+ ~3,is time-varying such that the persistence

decreases when nt = n1. In this way discrete shifts in nt not only directly induce discrete

shifts in the conditional variance, they also bring about shifts in the persistence of the

GARCH dispersion.

In short, the key feature of the GARCH/Markov switching model is the relaxation of

the assumption of a constant student-t shape parameter n, thereby permitting the condi-

tional variance to be the product of two stochastic processes: a GARCH process for the

dispersion parameter, h~,and a discrete markov-switching process for the shape parame-

ter, nt. The idea behind this specification is that the variance can have the persistence

associated with GARCH processes throughout periods when the discrete-valued shape pa-

rameter n remains essentially unchanged, yet the variance will be subject to potentially

large discrete shifts whenever n changes. A secondary feature of this specification is that

markov switching in n induces discrete shifts in the persistence of the GARCH process,

as it reduces the weight given to shocks drawn from the more leptokurtic state. Previ-

ous studies that assume GARCH processes and student-i error distributions have held the

degrees-of-freedom parameter constant [Baillie and Bollerslev (1989); Hsieh (1989)]. One

exception is Hansen (1994), but his model assumes the variance follows a GARCH process,

so the second moment is not subject to discrete shifts as the degrees-of-freedom parameter

changes.
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Estimation issues

This model builds on the work of Cai (1994) and Hamilton and Susmel (1994), who

added markov switching to ARCH processes. The extension to GARCH processes is com-

plicated by the presence of at least one moving-average coefficient (in our case ,8) in the

GARCH process. Here I discuss how methods described in Kim (1994) can be applied

to make estimation feasible. For estimation it is convenient to define v = -~and re-write

equation (5) as

= ‘y + a ~_~(1— 2vt_i) + J3h~_1 (6)

because in practice we estimate v1 and vh as parameters in order to test whether they are

significantly different from zero, i.e., whether the conditional densities are normal. We also

introduce superscripts to indicate that a parameter is a function of contemporaneous and

lagged values of the markovian state variable S. For example,

(St)

itt = [LlSt+ILh(lSt) when StSt.

The autoregressive nature of equation (6) implies that h~is a function of all past values of

the state variable S~.Using the superscript notation, we elaborate equation (6), making
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explicit the dependence on past values of S~:

h~t_1,8t_2,,s1) = ~ + a ((~~))2 (i — 2vr’~)+ ~h~2 ,...,sl) (7)

Clearly it is not practical to examine all of the possible sequences of past values of the

state variable when evaluating the likelihood function for a sample of more than a thousand

observations, as the number of cases to consider exceeds 1000 by the time i = 10. Kim

(1994) addresses this problem by introducing a collapsing procedure that greatly facilitates

evaluation of the likelihood function at the cost of introducing a degree of approximation

that does not appear to distort the calculated likelihood by much. The absence of lagged

conditional variance terms in ARCH processes enables Cai (1994) and Hamilton and Susmel

(1994) to estimate ARCH-Markov switching models, as opposed to the GARCH/Markov

switching model used here, in a straightforward way without any approximation.

The collapsing procedure of Kim (1994), when applied to a GARCH process, calls for

treating the conditional dispersion, h~,as a function of at most the most recent M values

of the state variable S. For the filtering to be accurate, Kim notes that when h is p-order

autoregressive, then M should be at least p + 1. In the GARCH(1,1) case p = 1, so we

would have to keep track of M2 or four cases, based on the two most recent values of a

binary state variable. However, h~is not a function of S~,so, even though M = 2, h is
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treated as a function of only S~_~:

,(O)
— ~ — 0

L(i)_LfC~ —

Ut — ~ti\~t—i — 1

Denoting pt as the information available through time t, we keep the number of cases to

two by integrating out St~before plugging lagged h into the GARCH equation:

= Prob.(St_i = 0

+Prob.(S~_i= 1 s~t)h~ (8)

This method of collapsing of h~°~and h~onto h~at every observation gives us a tractable

GARCH equation which is approximately equal to the exact GARCH equation from equa-

tion (7):

~ = ~ + a (4~i)2 (i — 2v~i)+ ~h~_i, (9)

where j ~ {0, 1} corresponds with S~_~~ {0, 1}. Note that th~~collapsing procedure inte-

grates out the first lag of the state variable, St_i, from the GARCH dispersion function, h~,

at the right point in the filtering process to prevent the conditional density from becoming

a function of a growing number of past values of the state variable.
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With equation (9) defining ~ the log-likelihood function is

lnL~~’~~= lnF(.5(n~+ 1)) — inF(.5n~)— ~

+ 1)ln (i + (10)

where i E {0, 1} corresponds with St ~ {0, 1}, j ~ {0, 1} corresponds with Se_i E {0, 1}

and F is the gamma function. The function maximized is the log of the expected likelihood

or

in (~~ Prob.(St = i, St_i = j I ~~_i)LN)) (11)
t=i i=Oj=O

as in Hamilton (1990).

III Results for six bilateral EMS exchange rates

The compound GARCH/markov switching volatility model was estimated for weekly

(Friday-to-Friday) log-differences in the exchange rates of six EMS currencies with the

Deutsche mark from January 1980 through January 1995. Data come from the Federal

Reserve Board’s H.13 release. The rates are all in units of domestic currency per D-mark.

The countries are Denmark, the Netherlands, France, Belgium, Italy and Ireland.i Results

‘The sample includes post-September 1992 data for the Italian lira after it left the ERM.
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for the Austrian schilling/D-mark rate are included for comparison purposes, because the

schilling was also pegged to Deutsche mark throughout the sample period, but was not

subject to official target zones or formal realignments until January 1995 when it joined

the EMS.

The parameters in the compound GARCH/markov switching model of EMS exchange

rates, from equations (5)-(9), are (ho,a,/3, i—, ~~,p,q,ith,itj). Several starting values were

used to check that the estimates did not converge to sub-optimal local maxima. Table

1 presents the parameter estimates and shows that the differences between the estimated

degrees-of-freedom parameters are largest for the Netherlands, Denmark and Italy. For

these countries the conditional distributions appear to switch between one that is nearly

normal and one that is highly leptokurtic. The conditional distributions for France, Belgium

and Austria are quite leptokurtic in both states. Ireland, in contrast, has a degrees-of-

freedom parameter that is essentially greater than four in both states. With the exception

of Belgium, all currencies have i~ti> 0, which suggests that the currencies depreciate on

average relative to the D-mark in the most leptokurtic state. Finally, Austria’s exchange

rate does not show evidence of state switching.

It is also interesting to note how the weights placed on lagged squared residuals in the

GARCH process vary with the degrees-of-freedom parameter. Two rows near the bottom

of Table 1 give the weights placed on lagged squared residuals in the GARCH dispersion

from equation (6), a(1 — 2vt). For the Netherlands, France, Denmark and Italy, squared
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residuals in the low degree-of-freedom state receive very low weights. Figures la-f show

the movement of the reciprocal of the degrees-of-freedom parameter, where dashed vertical

lines mark dates of realignments. The realignments of the French franc, Danish kroner and

Italian lira often occur in the highly leptokurtic state, but the occurrences of the leptokurtic

state are certainly not limited to dates of realignments. Thus there are many other dates

where the model places a low weight on a lagged squared resiudal in the GARCH equation.

For this reason, the markov-switching method of endogenizing the weights on squared

residuals in the GARCH process offers a desirable alternative to simply dummying out the

squared residuals that correspond to realignments.

The sum a(1 — 2vt) + ~3represents the persistence of the GARCH dispersion and its

values are in two rows at the bottom of Table 1. The only case where this sum is explosive is

a(1 — 2vh)+/3 = 1.02 for the Dutch guilder, although the sum is not statistically significant

from unity. Besides, the dispersion process will not stay in an explosive state indefinitely,

because it will switch to a state where the persistence is .926. More importantly, the

variance can undergo discrete shifts that allow it to change much more rapidly than the

dispersion. Taking the Danish kroner as an example, the variance decreases by about

84 percent when the degrees-of-freedom parameter switches from n1 to nh, holding the

dispersion constant:

/ _!~h_\
flh2 ~ =.157

\ nj—2

In this way, the “variance of the variance” that the model can explain is quite large even
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within the space of a few observations (weeks). Without markov switching in the variance,

the conditional variance would not be subject to discrete shifts and would adjust more

gradually.

To illustrate the importance of switching in the degrees-of-freedom parameter, I esti-

mated the model with n~constrained to equal ~ A standard likelihood ratio test would be

valid only if we were certain that markov switching in the mean was significant. Otherwise,

the test is nonstandard in that the transition probabilities might not be identified under

the null [Hansen (1992)]. For this reason we do not rely solely on the likelihood ratio to

examine the benefits of allowing n to switch. A goodness-of-fit test is included to test the

specification, because it is not subject to the problems affecting the likelihood ratio test.

The test is the same one Vlaar and Palm (1993) used, because it is valid for non-i.i.d.

observations. The 786 observations are separated into 50 groups based on the probability

of observing a value smaller than the actual residual. If the model’s density function fits

the data well, these probabilities should be uniformly distributed between zero and one.

Following Vlaar and Palm (1993),

= ‘it where ‘it = 1 if (j ~1) <EF(e~,Ô) ~
= 0, otherwise.

The expected value of the cumulative density function, F, is taken across the two states

that might have held at each time.
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The goodness-of-fit test statistic equals T/50 >I~1(n~— T/50)2 and is distributed x~9

under the null. Table 2 contains the maximized log-likelihoods for the model with and

without the restriction on nt and the corresponding goodness-of-fit test statistics. The

goodness-of-fit test statistics improve dramatically when the degrees-of-freedom parameter

is allowed to switch. Only Austria passes the goodness-of-fit test when n is held constant,

but the Austrian model did not show any improvement in the likelihood function when

n was allowed to switch. Four of the six EMS countries pass the goodness-of-fit test at

the one-percent level when n is allowed to switch. Only France and Ireland fail, but their

goodness-of-fit statistics still show improvement when n is allowed to switch.

Summary and Conclusions

This article introduces a GARCH/Markov switching volatility model that is well-suited

to intra-EMS exchange rate data. Markov switching in the student-i degrees-of-freedom

parameter has the desired effect of endogenously changing the weight placed on last period’s

squared residual in the GARCH process. Previous research in the GARCH literature had

debated whether or not to dummy EMS realignments out of GARCH conditional variances,

but markov switching provides a more satisfactory and flexible solution. More importantly,

markov switching introduces potentially large discrete shifts in the conditional variance in

this model, so the volatility can return to relatively normal levels within a few weeks
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following a large jump, such as a realignment.

Goodness-of-fit tests show that GARCH models of EMS exchange rates with markov

switching in the mean and constant degrees-of-freedom parameters are all easily rejected.

Only Austria, a newcomer to the EMS, passes this test. By allowing the student-i degrees-

of-freedom parameter to switch also, four of the six EMS currencies pass the specification

test.

Research into the effect of fat-tailed shocks on expected utility [Geweke (1993)] suggests

that leptokurtosis has not received consideration in proportion to its potential welfare and

asset-pricing effects. The model developed in this article permits time-varying conditional

kurtosis, which could play a role in explaining variation in asset prices.
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Table 1: Parameter Estimates for GARCH/Markov Switching Model

parameter HFL BLF FF DKR LIT IRL AUT
‘y

a

9.8E-6
(7.7E-6)

.121
(.035)

9.4E-4
(3.2E-4)

1.29
(.838)

3.2E-3
(1.4E-3)

.847
(.581)

.002
(.001)
.114

(.058)

9.8E-4
(5.OE-4)

.120
(.029)

.645
(.306)
.153

(.063)

1.1E-3
(3.1E-4)

1.23
(.406)

/3 .906 .359 .382 .857 .870 .668 .339
. (.022) (.079) (.188) (.064) (.027) (.112) (.075)
Vh = -~-

nh
.029 .412 .365 .024 .109 .096 .365

= ~-

(.089)
.416

(.056)
.465

(.068)
.499

(.058)
.425

(.036)
.456

(.073)
.253

(.042)
.365

ith

(.060)

-.007
(.003)

(.039)

6.OE-4
(.003)

(2.1E-7)

-.022
(.007)

(.030)

-.031
(.016)

(.020)

.010
(.010)

(.059)

-1.54
(.229)

(.042)

8.8E-5
(2.5E-3)

ILl .003
(.005)

-.364
(.150)

.129
(.023)

.059
(.023)

.705
(.071)

1.29
(.172)

8.8E-5
(2.5E-3)

p

q

.910
(.044 )

.894
(.056)

.994
(.007)
.989

(.015)

.880
(.037)
.551

(.096)

.946
(.037)
.946

(.054)

.949
(.012)
.429

(.094)

.764
(.057)
.809

(.043)

n.a.

n.a.

— 2vh) .114 .227 .229 .109 .094 .124 .332
a(1 — 2vj) .020 .090 .002 .017 .011 .076 .332
a(1 — 2vh) + /3 1.02 .586 .588 .966 .964 .792 .671

— 2v1) + /3 .926 .449 .384 .874 .881 .744 .671
Log-Lik. 883.1 320.9 176.6 34.5 -272.6 -1861.0 545.4

Note: Standard errors are in parentheses.
All exchange rates are relative to Deutsche mark.

HFL=Dutch guilder; BLF= Belgian franc; FF=French franc
DKR= Danish kroner; LIT= Italian lira

IRL= Irish pound; AUT= Austrian schilling
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[___________________ Table 2: Goodness-of-fit_tests_____
HFL BLF FF DKR LIT IRL AUT

Log-Lik. n1 ~h 883.1 320.9 176.6 34.5 -272.6 -1861.0 545.4

Log-Lik. n1 = ~h 879.1 320.1 170.9 28.0 -300.8 -1862.1 545.4

G. fit flj nh 64.5
(.068)

68.7
(.033)

82.9
(.002)

46.8
(.563)

64~5
(.068)

83.0
(.002)

47.1
(.550)

G. fit n1 = ~h 155.1
(.000)

109.4
(.000)

86.0
(.001)

117.6
(.000)

262.1
(.000)

91.0
(.000)

47.1
(.550)

Goodness-of-fit statistics are x~9under null
p-values are in parentheses.

1% critical value for X~9is 74.9.
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Reciprocal of Student-t Deg. of Freedom for Denmark/Germany
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