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1. Introduction

Rational expectations equilibrium is often viewed as a long run concept, where

agents have already learned the law of motion governing the system in which they operate.

A common research question, asked increasingly often in the recent literature, is how this

learning takes place, and more importantly, if it makes any difference for inferences from

dynamic general equilibrium models whether the learning is explicitly modeled. Some have

argued that simple and plausible learning rules exist that do converge to rational

expectations equilibria under general conditions, and that therefore the rational

expectations concept is appropriate for naming the potential long run outcomes of a

dynamic model. Lucas (1987, p. 231) suggests, for instance, that learning “lend[s}

plausibility” to the theory of rational expectations, and Marcet and Sargent (1988, p. 171)

comment that:
It is remarkable that the “adaptive” least squares learning schemes are
attracted to rational expectations equilibria, and that, naive and
backward—looking as they are, they provide promising leads on superior ways
for us economists to compute rational expectations equilibria. It is also
comforting that these adaptive mechanisms seem not to be attracted to
“bad” bubble equilibria as limit points.

In this view, the purpose of explicitly modeling learning is to select a single rational

expectations equilibrium as the likely outcome of a model under actual expectations, thus

helping to resolve the problem of multiplicity.’

On the other hand, some authors, such as Grandmont and Laroque (1990b, p. 2),

have suggested that there might be more to the problem, in the sense that “... learning

might generate endogenously complex nonlinear trajectories, along which forecasting errors

would never vanish.” In other words, instead of viewing the potential outcomes under

learning as either convergence to rational expectations or explosive nonconvergeuce, one

should recognize that these (generally speaking) nonlinear learning systems may possess

attractors other than the steady state. This paper provides an example of such an

‘See also the work on expectational stability by Evans (1985) and Evans and Honkapohja (1991).
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outcome. In a standard version of the overlapping generations model with learning as

represented by least squares autoregression, it is shown that the system need not be

attracted to a rational expectations equilibrium as a limit point. The alternative attractors

are dubbed learning eqi.tilibria.

The main result of the paper uses the llopf bifurcation theorem to prove the

existence of periodic and quasiperiodic trajectories that do not exist under perfect foresight.

These equilibria occur near the monetary steady state and depend entirely on fundamental

factors.2 In a learning equilibrium, the system follows a complicated dynamic path, yet

under the assumptions of the model, no perfect foresight periodic equilibria exist. ilence,

explicitly specifying the learning process underlying rational expectations can imply new

potential outcomes for the model that do not exist when it is assumed that “learning is

complete,” as is common practice.

The results of the paper can also be interpreted as demonstrating that learning

alone can lead to complicated dynamics in a simple overlapping generations model. Several

authors have shown that various propagation mechanisms can lead to endogenous

competitive business cycles in this model under perfect foresight; examples in this class

include Farmer (1987), Reichlin (1987), and Grandmont (1985). The analysis in this paper

shows that a learning assumption can provide another route to endogenous cycles in a

dynamic general equilibrium setting. The periodic equilibria are induced by learning alone

in the sense that they are produced in a setting where it is known that no cycles exist

under perfect foresight.

The bifurcation parameter is the gross rate of growth of the money stock, which is

the only policy parameter in the model. For any utility function meeting general

prescriptions, there is a rate of money growth “sufficiently high,” made precise in the

2That is, the equilibria under discussion are not induced by the introduction of frivolous variables
into the agents’ forecast functions, so these are not sunspot equilibria of the type discussed by Asariadis
(1981) and others.
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analysis, that causes a Hopf bifurcation to occur. The dynamic outcomes of the model may

then lie entirely on an invariant closed curve. Hence, this is a model where some monetary

policy rules are bad in the sense that they induce aggregate fluctuations, while other policy

rules are good in the sense that they allow convergence to the monetary steady state. A

Hopf bifurcation cannot occur under perfect foresight because in that case the dynamics of

the model are described by a first order difference equation which cannot give rise to

complex characteristic roots.

The next section outlines a version of the overlapping generations model under least

squares learning. Section three discusses the Hopf bifurcation and presents the necessary

and sufficient conditions for such an event to occur near the monetary steady state.

Section four presents some results for simulated systems. Section five shows how forecast

errors can be eliminated in a periodic learning equilibrium, and the final section provides a

summary, draws conclusions, and suggests areas for further research.

2. An overlapping generations model

A standard version of the overlapping generations model is employed; for a detailed

account see Sargent (1987). The presentation here is in terms of the gross inflation

rate—the inverse of the gross rate of interest—in order to facilitate the introduction of

least squares learning.

An infinite horizon economy is populated by agents who live for two periods. The

agents are indexed n = 1 ... JV(t), where N(t) indicates the number of agents born at

time t. There is no storage and there are no bequests. Agent it born at time t is

endowed with w~(t)at time t and w~(t+1)at time t+1; taxed at r~(t),r~(t+1);and

consumes c~(t),c’(t+l). The agents maximize utility U~[c~(t),c’(t+l)} where (i)

indifference curves are convex; (ii) more is preferred to less; (iii) U’~~1/U~2—~ ~ as

c’(t)/c~(t-{-l) 0 and U~/U~2—+ 0 as c~(t)/c~(t+1)—+ ~ and (iv) c’(t), c~(t+1)are

normal goods. The government consumes G(t) 0 units of the consumption good, levies
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lump—sum taxes r’(t), r~1(t), and lends (borrows) L~(t)> 0 (< 0) by negotiating one

period loans at time t. The loans are repaid the next period in the amount of R(t)L~(t).

The solution to the agent’s problem requires that U~2/L1~= 1/R(t). The individual

agent’s supply of savings t = f~[w~(t)— r~(t),w’(t-1-1) — r~(t+1),R(t)] is increasing in

the first period after tax endowment, decreasing in the second period after tax endowment,

and, generally speaking, ambiguous in the gross rate of interest R(t).

In particular, the standard assumptions on utility given by (i)—(iv) are in general

insufficient to require savings to depend positively on the interest rate in the overlapping

generations model. An auxiliary assumption that savings does depend positively on the

interest rate amounts to an assumption that c~(t) and c’(t+l) are gross substitutes.3

The work of Sonnenschein (1973) and others has shown that any continuous function could

be an excess demand function; full generality in this regard would allow complicated

dynamics under rational expectations, and possibly even chaos, as has been shown by

Grandmont (1985). Therefore, the simple overlapping generations model has, as a logical

possibility, complicated and chaotic equilibrium paths based on perfect competition,

perfect foresight and utility maximization.

However, in this paper, cyclic and chaotic perfect foresight equilibrium paths are

ruled out by the following:

Al. Savings depends positively on the rate of interest.

Because this assumption is made and maintained throughout the paper, the complicated

equilibrium paths derived will be induced by the introduction oflearning alone.

The model can be completed by introducing a role for currency. Denote the

nonnegative price level by P(t), and suppose that at time t = 1 the government owns

3See, for instance, the discussion in Sargent (1987) and the references cited therein.
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11(1) > 0 units of currency. The government budget constraint is

G(t) = R(t_1)L~(t_1)— L9(t) + [H(t) — H(t—l)}/P(t) + ~r~1(t) +

Arbitrage requires that the rate of return to loans equals the rate of return to holding

currency, R(t) P(t)/P(t-i-l). The government budget constraint can therefore be

rewritten

G(t) = R(t—l) [Lfl(t_l) — Ll(t—1)/P(t—1)] — [i/(t) — H(t)/P(t)] + ~r’1(t) + ~r~(t)

where H(0) = 0 and L9(0) = 0. Loan market equilibrium requires

~ [~(t), w~(t) — r~(t), w~(t+ 1) — T~(t+ 1)] = H(t)/P(t) — L~(t).

While this more general framework could be retained in what follows, some

simplifying assumptions will be applied in order to keep the thrust of the paper clear, and

also to maintain comparability to other work—particularly Marcet and Sargent (l989b).

First, suppose population is fixed and normalized to unity, and secondly set L~(t)= 0 V t.

Use the arbitrage condition R(t—1) = P(t—1)/P(t) to obtain

(1) = f[P~/F~P~÷1].

where ff~]is the aggregate savings function, and where parenthetical notation is replaced

with subscript notation for convenience. The following assumption is employed:

A2. Aggregate savings is positive.

The process for currency creation is given by

(2) JJ~= OH~1

where 9> 1 is the gross rate of currency growth, a policy rule chosen by the authorities.4

4The model given by (1) and (2) corresponds to Sargent’s (1987) example 7.6, p. 271, or equally
well to Grandmont (1985) with the addition of the maintained gross substitutes assumption Al. Marcet
and Sargent (198gb) use a slightly different version of the government budget constraint, lI~= OHt~i+
EPt, where ~ i8 the fixed real government deficit; identical results can be obtained with this
formulation (as will be shown in section four, example 2) viewing ~ as the bifurcation parameter. The
system described by equations (1) and (2) can also be viewed as a version of the Cagan model of
hyperinflation.
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This paper is concerned with the analysis of the system defined by (1) and (2) under least

squares learning.

The model can be closed under perfect foresight by introducing the following

notation:

(3a) =

(3b) =

Given a specification for agents’ utility functions, the savings function can be derived and

the system can then be reduced to a nonlinear difference equation in

Learning can be introduced into the model by assuming that the forecast price is a

function of past prices

= p(P~,..., Ps).

The least squares autoregression used to describe learning in this paper is given by

(4a) =

—1 i—i

(4b) = [~P2~] ~
That is, agents form expectations by computing a first order autoregression using data

available through time t—1. Versions on this theme have recently been studied extensively

by Marcet and Sargent (1989abc) and Sargent (1991). In order to make the system under

learning tractable, the formula in (4ab) can be written recursively as:8

(5a) = st—i + ~ k—1 —

(Sb) = [~:~~—1]
Combining (5ab) with (1) and (2) implies

5See section four for some examples of solutions under perfect foresight.
8See Harvey (1981) or Ljung and Soderstrom (1983) for details of deriving recursive least squares

formulas.
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(6) = ~ + g~ -

where

= “~—2~‘~_i]—~.

The remainder of the paper is primarily concerned with the analysis of this system.

Equation (6) has a fixed point at 13 = 0 this is the monetary steady state of the model.

Assumption 2 guarantees that money demand is positive at this stationary equilibrium.

There is also an autarkic steady state in the model; this will be denoted by 13 = 13> 0.

3. Learning equilibria

The heart of the analysis concerns a Hopf bifurcation near the monetary steady

state. Let the characteristics of the economy, including the gross rate of money growth,

the endowments, and the parameters of the utility function, be indexed by a single

parameter ~ in some open interval of ~ the critical value at which the Hopf bifurcation

occurs. Denote the interval by (~‘~b)’where ~ <~&~<~

The dynamics of the economy are described by
f (134)

(7a) fi~= fi~_.+ g~1of (134) —

(7b) fit—i =

1 f(fi;12)2 —i
(7c) g~ g21 1 + 1

which is a rewrite of equation (6). Denote (7abc) by ‘y~= G,~(’y~_1),where = [fit’ fi~_1’

C: u .~ is defined by the right hand side of (7), and U is a subset of O~ such

that 13 E (0,~) and g E (0,1). A locally unique fixed point is given by ~ = [0 0 ~

where ~ is the limiting value of g~ as time tends to infinity. A lemma establishes the
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value of this limit when fi~converges to the steady state at 13 = 0. The lemma also

establishes that g~remains in a neighborhood of ~ when fi~remains in a neighborhood

of 0

LEMMA 1. (i) If lim~~fi~= 0, ~ lim2~,,g~= 1 ~—2 (ii) Let c, e’ be positive real

numbers, and let p be the bifurcation parameter, where p0 denotes the bifwrcation point.

If, at some time r> 0, {‘~~}‘~c (0— ,O+e), then {~~}‘~c (~—E’,~+f’). Furthermore,

I — 1Lot —40 ,‘ C —40 ,‘ E’—40.

PROOF. See Appendix 1.

Focus will be placed on bifurcations near the monetary steady state 13 = 0. A fact

about the llopfbifurcation is that the radius of the invariant closed curve is proportional to

I ~ — ~, so that the cyclic outcomes can be induced to occur arbitrarily close to the

steady state at 13 = 0 by choosing p arbitrarily dose to p0 (Ruelle, 1989). Thus, part

(ii) of lemma 1 applies to the case where the sequence {fi~}’~ is a limit cycle about 0

when p E (p,p5). Lemma 1 can be applied to approximate the system (7abc) by a

linearization at the steady state, replacing g~with its limiting value ~. The Jacobian is

given by

(8) DG(’y~,p)= 1 — ~ + J -J 0

°~~—1/°~~_1°~~_1/°~~2~[i +~]_2

where J = —~0ffl(U’)/AU1). The notation is meant to emphasize that the derivative

ffl(Ul) is taken with respect to fi~,not fit, so that its sign is negative by assumption

1. Hence J> 0 by assumption.

The Hopf bifurcation theorem is stated in appendix 2. It applies to mappings
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indexed by a single parameter from an open subset U of ~ into ~ The bifurcation

occurs when the Jacobian of the map, evaluated at the fixed point, has complex roots

which pass through the unit circle at p = p0. Heuristically, then, the first steps in

applying the theorem are to find the conditions for complex roots and to reduce the

problem to a problem in 1R2.

Lemma 1 implies that when ~ = 0 one of the roots of (8) is given by 1/02,

which is always between zero and one. The second part of the lemma implies that this is

also approximately true near the bifurcation point. This fact can be used to achieve a

reduction in the dimension of the problem via an application of the center manifold

theorem stated in appendix 3. Essentially, the theorem states that near a fixed point,

recurrent behavior such as stationary states, cycles, and invariant closed curves must occur

(locally) in a center manifold.7 In the present case, since the Jacobian DG(~y*,p) is

available analytically (and since the third root of [8] is stable), the theorem implies that

analysis can proceed as if the entire Jacobian consisted of the submatrix given by

(9)
1 0

where F is defined by the right hand side of (7ab). This amounts to finding the zeros of

the characteristic equation of (9), which, denoting the roots by p, is given by

(10) p2—[02+J]p+J=o.

In order to apply the Hopf bifurcation theorem, define = [13 131’ #* = [9 0]’

and denote = F(~~1),~* = F(~). The theorem will be applied in three steps.

First, conditions are derived under which the eigenvalues of DF evaluated at the fixed

point can be complex. Next, it will be shown that there is a critical value p0 for which

these roots change stability (that is, a value p0 such that the roots have modulus one).

Finally, conditions (ii) and (iii) of the theorem will be analyzed.

7See Grandmont (1988) for a discussion.

IL
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LEMMA 2. (Complex roots).

Let p, ~ be the roots of DF(çó*). Then a necessary condition for p, ~ to be complex

conjugates is that 0 < J < 4. A sufficient condition is that J = 1.

PROOF. From equation (9),

(1—~+ ~±~(l—~+ J)2—4J
p, p =

2

which implies p, ~ complex if

(l—~+ J)2<4J.

For this condition to hold, J> 0 is required. Because 0 < ~ < 1, J < ~ is also required,

which establishes the necessary condition. Within this range, J = 1 is the only value of J

for which the condition holds regardless of the value of ~, which establishes sufficiency. I

Lemma 2 implies that a Hopf bifurcation can occur about the steady state under

least squares learning only when ffi(U1) <0 (implying J> 0); hence only when cycles

and chaos are ruled out under perfect foresight. That is, the existence of a Hopf bifurcation

in this model requires the imposition of a gross substitutes assumption, which is known to

be sufficient to eliminate cycles and chaos under perfect foresight.8

Next, the meaning of the critical value of the bifurcation parameter p is

investigated. The roots p, ~ are, at the point of the Hopf bifurcation, given by the

complex conjugates p, ~ = u ~ vi, where

u=(1—~+ J)/2

~4J — (1 — ~ +

2

A bifurcation occurs if some value p0 exists such that when p = p0 these roots pass

8See Sargent (1987) for a. discussion of this fact.
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through the unit circle. A simple calculation shows that modulus is one when J = 1,

which is when

—~Of~(U’)/AU1)= 1.

This equality can hold so long as ffl(U1~)< 0, which is again the gross substitutes

condition in assumption 1. Substituting the limiting value of ~ shows that J = 1 when

f(U’)/f(04) = 0/(l —02).

The nature of the savings function J~.)is determined in part by the parameters of

the utility function underlying the model; these parameters can be taken to be fixed for the

present analysis. Therefore the general bifurcation parameter p can be thought of as the

gross money growth rate 0 in the present context. The following theorem shows that there

is, under general conditions, some value 00 E (1,w) that makes J = 1. At this same value

00 the roots of equation (10) are complex and condition (iii) of the Hopf bifurcation
theorem holds. Taken together, these facts imply the existence of a Hopf bifurcation in

this system near the steady state with 0 = 00.

THEOREM 1. (Existence of a Hopf Bifurcation).

Let 13 = ~ be the autarkic equilibrium of the model. Under maintained assumptions, the

monetary steady state occurs at 13 = 0 < ~. Assume (i) the limits lim9~ f~(73) and

lim~1f~(l)are finite, and (ii)

(1+ 9_2) f 0)2

fifi 0 0 (f’ — 0~) f(00)

where is the second derivative of the savings function with respect to 13. Then a value

E (1,~) exists such that the following conditions hold simultaneously

(a) p, ~ are complex conjugates,

(b) p has modulus one, and

(c) dR > 0, R ~ u2 + v2.

p=po
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PROOF. By Lemma 2 the sufficient condition for complex roots is that J = 1, or

f(U1)/XU’) = 0/(i —02).

Denote f*(9) = f~(U1)/flU’), and 2(0) = 0/(1 — 02). By the definition of modulus R,

J = 1 is also the condition for the roots to cross the unit circle. Hence, (b) ~ (a).

The function z( 0) is continuous and monotonically increasing in 0 V 0 E (1,w).

Furthermore, lim~1.z( 0) = -~nand lim~z(0) = 0.

Under the assumptions on utility and assumptions 1 and 2, ffl(U1) < 0 and .kU1)

> 0, so that f *(.) <0. Since j~9)= 0, lim~—~f ~(~)= -in. In addition, since fl•) is

monotonically downward sloping, the point where jr.) = 0 is unique; hence f*(1) is finite.

Therefore there exists a 00 e (1,cn) such that J = 1. This proves parts (a) and (b) of the

theorem, and is illustrated in Figure 1.

Part (c) can be verified by direct calculation, noting that

dR =dJ .1
p—p0 0=0~

Neither of the assumptions (i) or (ii) are very restrictive, at least for the types of

examples considered later in the paper. In particular, .j~< 0 at the bifurcation point 0

= 00 is sufficient for (ii).

Strong resonance cases

To understand condition (iii) of the Hopf bifurcation theorem, translate the roots p,

~ into polar coordinates as

= J(cos a ± i sin a)

where

cosa=(1—~+J)/2J

~4J—(1—~+ ~2
sin a =

2J

12



so that a is a function of 0, denoted a = a(0). Condition (iii) requires a(00) # 2~r/q

for q = 1, 2, 3, 4. At 0 = 00, J = 1 and the equations become

cos a = (1 + 0-2)/2

sina=

2

Then if, say, 00 = 1 (which is not allowed anyway), cos a = 1 and sin a = 0 so that a

= 2ur, which is a value of a cited in condition (iii). These situations are known as

“strong resonance” cases, and are ruled out by assumption. That is, values of 00 E (1,n~)

are allowed, excepting those that make condition (iii) of the llopf bifurcation theorem true.

Strong resonance cases can be analyzed using alternative methods (see boss, 1979), but are

ignored here since they are exceptional in any event (Grandmont, 1988).

So far, this section has demonstrated that a Hopf bifurcation occurs in the model

under general conditions at a critical value of the gross rate of monetary growth. Two

topics remain concerning the nature of the dynamics generated as 0 passes through 00.

First, the dosed invariant curve, the existence of which has now been established, may be

either asymptotically stable or unstable; in the terminology of the mathematics literature,

the Hopf bifurcation may be either supercritical or subcritical. Second, the nature of the

periodicities on an invariant closed curve warrant discussion.

Stability of the invariant closed curve

From the last portion of the statement of the Hopf bifurcation theorem in appendix

2, the stability of the invariant closed curve is seen to depend on the value of a certain

coefficient v.,2 at 0 = 00. The value of this coefficient can be calculated for the present

model, although the calculations are quite arduous. Unfortunately, the evaluation of

w2( 0~) involves second and third derivatives of excess demand fi.) and hence third and

fourth derivatives of the utility function U. Since the signs of these derivatives are not
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given by theory, the conclusion must be that the invariant closed curve may be either

attracting or repelling. Examples of both possibilities are provided in the next section.9

Periodic and cluasi—Deriodic trajectories

When the utility function is such that an invariant closed curve is stable, it remains

to understand the nature of the dynamics generated by the map GIL(S). There are two

possibilities. One is that all points on the circle are periodic, with the period length

denoted by k. Another is that none of the points on the circle are periodic. This latter

case is not chaotic, however; the trajectories are said to be quasiperiodic, in that they

nearly repeat every k periods. The motion can be visualized as a rotation of a certain

angle ~ on the unit circle. If a/2ir is rational, the periodic case is obtained, while if

Zk/27r is irrational, the quasiperiodic case holds.’°

Although the angle E~can be calculated for the present model, it is not useful to do

so. Any small change in the parameters of the model can change a/2ur from rational to

irrational and hence change the dynamics. The most that can be said, therefore, is that

when a closed invariant curve exists and is asymptotically stable, the nonlinear map G(.)

can have either of two types of dynamics, periodic or quasiperiodic.

This section has shown that a Hopf bifurcation occurs in a simple overlapping

generations model under least squares learning. It is assumed that the money supply is

growing and that no equilibrium cycles exist under perfect foresight. The bifurcation

occurs at a value of the gross rate of money growth that is “sufficiently high.” Such a

value of the bifurcation parameter exists under general conditions. The analysis is local

and concerns a neighborhood of this critical point, 00 E ~0a’0b~ For values of 0 such that

0 < 0 < 00, the monetary steady state is locally stable under least squares learning. As 0

increases through 0 = 00, either an unstable invariant dosed curve vanishes (subcritical

9See also Farmer (1987) and Reichlin (1987).
10Grandmont (1988) provides details.
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Hopf bifurcation) or a stable invariant closed curve emerges (supercritical Hopf

bifurcation). In either case, the steady state becomes unstable. In the subcritical case, the

system simply diverges. However, in the supercritical case the equilibrium trajectories now

become periodic or quasiperiodic. Whether the bifurcation is supercritical or subcritical

depends on characteristics of the underlying utility function which are theoretically

unspecified. Hence, the main result is that in this model there is always some critical value

of the gross rate of growth of the money stock such that beyond this rate, the model under

least squares learning can attain an equilibrium that does not exist under perfect foresight.

4. Parameterization and simulation

The results of the previous section can be made more concrete by parameterizing

the model and simulating the implied system. Several versions of the model studied by

Marcet and Sargent (1989b) are employed.

ExamDle 1

In this example, the aggregate savings function is linearized as

(11) H~/P~=1_AF~P~+i/P~

for A E (0,1), while currency growth is given by equation (2), reproduced for convenience

as

(12) JJ~=

where 0 E (1,A~).11 The savings function in equation (11) can be derived from the case

where agents have logarithmic utility U = in c1 + in c2 with the first period endowment

set to 2 and the second period endowment set to 2A. The parameter A therefore

represents the size of the second period endowment relative to the first period endowment.

The linear specification is also more than sufficient to rule out cycles and chaos under

t1This amounts to Marcet and Sargent’s (1989b) model with their 7 = 1 and ~ = 0.
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perfect foresight (that is, to impose assumption 1).

lithe model is closed using perfect foresight, the stationary equilibria of the system

are solutions to

(13) = A~+ 0—

There are two stationary equilibria, fi~= 0 and fi = A~, and 0 < A~.The stationary

equilibrium at 0 is the monetary steady state, while the equilibrium at A~ is the

autarkic outcome where zero real balances are demanded. The qualitative graph of (13) is

given in figure 2. Equilibrium sequences ~ are indexed by fin. All equilibrium

sequences save one = fl~)converge to the autarkic equilibrium.

Under least squares learning the system is described by
(1 — Afi~2~

(14) fi~= fi~_~+ g~_1[o (1 — Afi~1)—

where

9t—1 = ‘~—2[~~1] 1

The asymptotic behavior of the system can be analyzed by simulating (14) with initial

conditions for and near the monetary steady state 13 = 0.12 According to

Theorem 1, a value of 0 exists such that a Hopf bifurcation occurs.

For this simulation, A = .9 and 0 ~ 1.0374, which is near the bifurcation point.

The autarkic equilibrium occurs at = 1.111. Two cases are illustrated, one where 0

is less than the bifurcation point 00, and one where 0.4 00 from the left.

In Figure 3, 0 = 1.037. Both the perfect foresight and the least squares learning

systems are provided with the same initial condition at = 1.047. The perfect foresight

system converges to the high inflation stationary state, while the system under learning

converges to the steady state at 13 = 0. This illustrates a theme in the recent literature on

learning, that the stability properties of stationary equilibria can be reversed under

121n all of the simulations that follow, fi..~= fib. The recursive formulae (7abc) were employed.
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learning relative to perfect foresight.13 When the value of 0 is closer to 1 or the initial

condition is closer to the monetary steady state, or both, the system under learning

converges more rapidly to the monetary steady state at fi~= 0.

Figure 4 illustrates the case where the money growth rate is increased to 0 =

1.0374885 and the initial condition is fl~= 1.0474885. The perfect foresight dynamics are

qualitatively unchanged, but the system under learning has undergone a bifurcation and

now orbits about the steady state at fi~= 0. Figure 5 plots the invariant closed curve in

~ space for 0 = 1.0374885. In this diagram the steady state is the point in the
ellipse at (1.0374885,1.0374885). Although it is not apparent from the diagram, this

closed curve is repelling.

Example 2

This example is exactly the same as example 1 except that equation (12) is replaced

with the Marcet and Sargent (1989b) specification

(12’) H~=0H~1+

The purpose is to show that the same bifurcation can be obtained by setting 0 = 1 and

examining the case of positive fiscal deficits ~, now taking ~ to be the bifurcation

parameter. With the given parameter values, the existence of a stationary equilibrium

requires that e < Las = .002633403. The bifurcation occurs near ~ ~ .0024. The

periodic equilibrium is given by the graph in Figure 6. As in example 1, this dosed curve

is repelling.

Examnle 3

This example produces an attracting closed curve. The logarithmic utility function

of examples 1 and 2 is replaced with a CES utility function U = (c~+

135ee especially Grandmont and Laroque (1990) and Marcet and Sargent (i989b).
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Endowments are set as in example 1. The system is given by
2 + 2Afl

(iSa) H~/P~=2— +

(15b) H~= 0H~1

Money demand is zero when fi = A”4. The parameter p is set to .8 for this example.

lithe system is closed using perfect foresight, and if the second period endowment is set to

zero (A = 0), the system has a closed form representation as the difference equation

(16) fi~= [0-~’fi~_i(~+ fi~~)— 111/4.

This equation has a fixed point at 13 = 0. Because A = 0, the autarkic equilibrium is

represented by a sequence ~ with lim2~fi~= ~. The system under learning can be

simulated by substituting (iSa) into equation (6).

In this example, the bifurcation point occurs at 00 ~ 1.24. When 0 < 00, the

steady state at fi = 0 is the attractor under least squares learning. When 0 > 00, the

attractor for the system is a dosed curve. Figure 7 illustrates the learning dynamics after

the bifurcation point. In the diagram, 0 = 1.243 is the monetary steady state. The initial

condition is very close to the steady state, ~ = 1.246. At this value of 0, the steady

state is unstable and the system is attracted to the closed curve. The periodicity in this

case is 11, and can be computed directly from the diagram.

Examole 4

This example makes use of a projection facility. Some authors have suggested that

the use of such facilities can improve the convergence properties of least squares learning

mechanisms by keeping the system in a region that has an economic interpretation. In the

model analyzed here, the only interesting cases are ones where the sequences for currency

and prices are strictly positive. To guarantee this outcome, one might assume that agents

never forecast negative prices. This can be accomplished as follows. Let the system under

learning in example 1 be given by equation (14) when fi~E (0,A~),and otherwise be given
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by fi4 = fi~1.The projection facility has the effect of containing the system when it

threatens to enter a region that does not make economic sense.’4

When the model of example 1 is augmented with a projection facility, very erratic

dynamics are possible under learning. In Figure 8, the gross rate of money growth is set to

1.1, which is past the bifurcation point. The time series presented consists of the

observations from 50,000 to 50,500. The system shows no tendency to converge either to

the monetary steady state at fi = 1.1 or to any other attractor. Heuristically, the

attractor for the system lies in a region of the space where the model is not defined, and is

prevented from moving toward the attractor by the projection facility. Such systems are

unlikely to converge.

5. Eliminating Forecast Errors

The idea that agents learn over time to eliminate systematic forecast errors lies at

the heart of the concept of rational expectations. A sensible question therefore is whether,

in the periodic learning equffibrium, systematic forecast errors exist which could be

eliminated. In fact such errors do exist, and they can be easily eliminated in a way that

makes the learning equilibrium also a perfect foresight equilibrium.

To see this, consider the actual versus the perceived law of motion for prices in this

model:

Xfi~)
Actual: P =0 -1 P

H~1 ~(~) 4

Perceived: P4k’ = ~

The actual law of motion is derived from equations (1) and (2), while the perceived law of

motion is given by equation (3). When fi = 0, the actual law of motion equals the

perceived law of motion, and rational expectations equilibrium is attained.

Denote a strictly periodic learning equilibrium of order k, attained at some time ~r,

145ee Marcet and Sargent (1989abc) and Grandmont and Laroque (1990b).
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by {fi}~ E {fi1, ~2’ 13k} where = fl~, fi1 = fi~1, and so on. The case of a

quasiperiodic learning equilibrium will be set aside for the moment. Then considering the

actual law of motion, the relationship between adjacent prices cannot be fixed in general,

since the ratio in the savings function cannot be constant. But the perceived law of

motion, representing a regression of prices in period t on those in period t—1, is specified

to find a fixed relationship between adjacent prices—a relationship of exactly the sort that

does not exist when the system converges to a cycle. Hence, forecast errors, calculated as

perceived P~1less actual P~1,do not tend to zero under this regression specification.

However, the following lemma demonstrates that in a periodic equilibrium there is a

fixed relationship between certain prices, and hence also an alternative regression

specification, that can be exploited by the agents in this model in order to completely

eliminate all forecast errors and thus make the learning equilibrium into a rational

expectations equilibrium. In particular, along a periodic equilibrium of order k, there is a

fixed relationship between prices of period t and those ofperiod t—k.

LEMMA 3. Suppose {fi4}~ follows a periodic path denoted {~1~~ ~ where fi~=

~k’~1= fi~1,and so on. Then =

PROOF. From equation (1),

(i) H4 = P4J~fl4)

(ii) Hj+k =

Since 134 =
13t+k’ itfi4) = i(~t+k)~From equation (2), Ht+k = OkH4. Hence = o~Pi.I’5

15For the quasiperiodic case, the relationship between f3~ and ~+k is not exact. Then Ft.k is
only approximated by 0kp1, since P1 +k = OkP1Utfi1)/j(fl~+k)] ~ 0kF1• Approximating the ratio of the
savings functions in this expression by 1+E implies that the periodic case occurs as e -4 0. As ~
deviates from zero, there is less and less sense in which there is a systematic relationship between the kth
prices that can be exploited by agents, and also less and less sense in which forecast errors are systematic.
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In other words, in the periodic learning equilibrium the agents are searching for a fixed

relationship between adjacent prices, when the actual fixed relationship is between the kth

prices. A regression specification that will detect this fixed relationship can be found as

follows. Let

=

where b4 is calculated at time t via

4—1 —1 4—1

b~= [~~k] [~a~k”s]’

but represents the perceived gross inflation rate over the entire k periods that constitute

the cycle. Since agents only live for two periods, they care only about fi4, the perceived

gross inflation rate from period t to period t+1. This is related to the coefficient b4 by
— ______

t_ Pt

The recursive formula for b4 is given by

(i7) b4 = b41 — ~1P4~1 — P4~1b~1]

where

C41 =

From equations (1) and (2), and by repeated substitution,

p
:( \ 4—k—i
Jk t—i’

so that substitution into (17) yields

.R:fi
(18) b4 = b41 — g 0k 4 —

f(~

where

= ~_k-1~ ~_k] E (0,1).
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Equation (18) describes the dynamics of the system when agents form expectations by

regressing period t prices on period t—k prices.

LEMMA 4. Suppose {fi4}~0follows a periodic path denoted {fi1, ~ ••~~ where fi0 =

~k’ ~1 = fi~4~and so on. Then the system described by (18) has a fixed point at b = 0~c.

PROOF. On the attractor, fl4—1 =

This result can be interpreted as follows. Agents regress prices from period t on

prices from period t—1 in order to try to learn to have perfect foresight. Provided 0 is

sufficiently small, the agents will succeed and the system will converge to the monetary

steady state. However, if the policy rule is for too rapid a rate of money growth, the

system under this learning rule will not converge to the monetary steady state and instead

may follow a periodic path after some time r. This is a periodic “learning equilibrium.”

In this case, the agents will observe systematic forecast errors and will want to eliminate

them by switching to a new forecast function. They can do this by switching, at some time

TI > r + k, to a regression of period t prices on period t—k prices. Such a switch implies

the dynamic system described by equation (18). So long as agents use information from

period r to period r’, this system will immediately yield the fixed point b = 0h, and

agents will completely eliminate the forecast errors.

6. Discussion

Imposing rational expectations on economic models often implies multiple

equilibria, and which of these is the outcome under actual expectations is in doubt.

Authors have sometimes invoked the casual argument that agents will learn over time to

form rational expectations, and that the outcome of the learning process will be a rational

expectations equilibrium. Lucas (1987), for instance, has suggested that the outcome of a
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learning process in the overlapping generations model will be the monetary steady state,

and that learning lends plausibility to the study of rational expectations equilibria. Marcet

and Sargent (1989abc) have studied systems governed by least squares learning and

conclude that such systems, when they converge, converge to rational expectations

equilibria. Grandmont and Laroque (1990b) have suggested that systems with learning

may possess stationary equilibrium dynamics unrelated to stationary perfect foresight

dynamics. The results of this paper shed some light on these claims.

Specifically, a general equilibrium system with least squares learning can converge

to a periodic trajectory that does not exist under perfect foresight. Even in the

neighborhood of the monetary steady state, there can be no presumption that plausible

learning rules “select” the stationary equilibrium where money has value. Once the

bifurcation parameter is past the bifurcation point, there is no neighborhood that is

attracted to this steady state. Nor is it true that systems with least squares learners, when

they converge, necessarily converge to stationary rational expectations equilibria. Instead,

support is found for the idea that systems with learning can possess attractors independent

of those that exist under perfect foresight.

A number of researchers have recently followed the lead of Azariadis (1981) and

others who have shown that widely used macroeconomic models, such as the overlapping

generations model analyzed here, can possess sunspot equilibria when frivolous variables

enter the forecast functions of agents. Woodford (1990) has shown that agents might

“learn to believe” in stationary sunspot equilibria. These models are sometimes advocated

as systems where macroeconomic complexity is explained. The same sort of claim can be

made for the model analyzed in this paper: for a certain values of the policy parameter, in

particular those that are “too high,” the dynamics of the model become complicated under

least squares learning. However, learning equilibria are based entirely on fundamentals and

do not require agents to “believe” in frivolous variables.

Although a standard version of the overlapping generations model is employed, the
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results of this paper are apparently unrelated to the existence of complicated perfect

foresight dynamics. The assumptions needed to admit a Hopf bifurcation near the

monetary steady state under least squares learning are such that the perfect foresight

cycles do not exist. In particular, a maintained assumption has been that first and second

period consumption of agents are gross substitutes.
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Appendix 1

This appendix proves lemma 1.

LEMMA 1. (i) If lim4~fi4= 0, ~ = lim4~,g4= 1 — u2. (ii) Let , c’ be positive real

numbers, and let p be the bifurcation parameter, where p0 denotes the bifurcation point.

If, at some time r> 0, {fi4}’~ c (0—c,0+c), then {g4}~ c (~—E’,~+f’). Furthermore,

p — p0 I ‘0 ~ 0 ~ ‘0.

PROOF. This proof follows the approach of Marcet and Sargent (1989b). Using equations

(1) and (2), repeated substitution shows that

41 f (fl’2)P =0 P.4-1 ~ ~ 0

Since

= ~

we have

4—1 1 2 —i
= [~~t+i 1(~:)J].

Part (i). Let iim4~fl4 = 0. Choose some small positive real 5 exists such that

f (fi~)~iimsup4~ 12 (1 + 5~

and

12

liminf — > (1—5).

i-~cs ~ ~2 -

Then S —~0 when fi~—+ 0. Therefore,
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2

or lim~~g~= ~ [tt+1]

lim~g4 = [i + 0_2 + + ... + U~(4-~)]~.

Since 0> 1,

lim g = i—U2.4-wi
~9~o

Part (ii). Suppose that at some time r, the sequence is described by motion on

an invariant closed curve, induced by a Hopf bifurcation at p = p0. Denote the period k

cycle by B = {fi1, fi~}~where = fit, fl1 = fi~1,and so on, in the periodic case, and

fi0 ~ fl~fi1 ~ fi~+1~and so on, in the quasiperiodic case. The following fact about Hopf
bifurcations is employed: as i~— i.’~ —. 0, the radius of the invariant closed curve

approaches zero (Ruelle, 1989). Therefore, at time r > 0, the sequence {~t}~r c

(O—f,O+), for some positive real E, and the points on the k—cycle can be made arbitrarily

close to 0 by choice of p.

Denote

f (fi~2)2F.Emin <1.
mm flteB ~ (fi;~~)2

By the continuity of the savings function and choice of p, Fmjn can be made arbitrarily

close to 1. Therefore, using the argument in part (i),

i-r2

limsup g > —~ i_U2 as (—40.
F.

lfl Zn

Similarly, let

f (fi~)2F ~mo..x >1
man fl1eB ~ (134)2
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so that

i-r2

liminf g < —~ i—U2 as f—+0.
F

mar
Hence, a positive real c’ can be chosen such that c (_g—~,~+c’), and —+ 0

implies ~‘ —+ 0. ~

Appendix 2

The Hopf Bifurcation Theorem is applied in the text.

THEOREM. (Hopf Bifurcation). Let a U’, s ~ 6, one parameter family of mappings be

given by F: I x U ~_. fl~2 where U is an open subset of ~2, p0 E I, and I is an open

subset of IL Let ~*(p) U be a fixed point of F at which the eigenvalues of DF are

the complex conjugates p(p0), ~(p0). Let F be C2 in p. Assume

(i) I~(~0)I= 1

(ii)

Let (r,a) represent the radius and angle of a polar coordinate, where a = a(p0) indicates

a function of p0. Assume

(iii) a(p0) # 2ir/q, q = 1, 2, 3, 4.

Let vi., i = 1,2,3,4 represent constants. Then there exists a ~ change of coordinates h

such that hFh~ has the polar coordinates form

hFh~(r,a) = [r(i + w1(p — p0) + w2r2), a + w3 + w4r2] + higher order terms.

If w2 < 0 (w2 > 0) there exists a right (left) neighborhood of p0 in which there is an

invariant attracting (repelling) closed curve for F in V.

Statements of the theorem can be found in Grandmont (1988), Guckenheimer and

Holmes (1983), or Ruelle (1989).
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Appendix 3

The Center Manifold Theorem is applied in the text.

THEOREM. (Center manifold). Consider the nonlinear map C: U -4 IRm, where U is a

subset of IRtm. Denote the fixed point by ~ such that G(7*) = #1* Assume the map is

twice continuously differentiable. Then a neighborhood V of ~ exists such that there is a

local center manifold Wc in V with first order continuous derivatives. The manifold is

locally attracting, in that for ‘y, G”(’y~ (n indicating the nth iterate 1~C) in V V n, the

distance between G~(7)and Wc tends to zero as n ~ a,.

For detailed discussions see Grandmont (1988), boss (1979), Guckenheimer and Holmes

(1983), or Carr (1981).
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